Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 5, pp 780–788 | Cite as

[NiEn3]MoO4: Features of the Phase Transition and Thermal Decomposition in the Presence of Lithium Hydride

  • A. S. Sukhikh
  • S. P. Khranenko
  • V. Yu. Komarov
  • D. P. Pishchur
  • R. E. Nikolaev
  • P. S. Buneeva
  • P. E. Plyusnin’
  • S. A. GromilovEmail author
Article
  • 4 Downloads

Abstract

The crystal structural characteristics of the [NiEn3]MoO4 complex salt (En is ethylenediamine) at 90 K are as follows: space group \(P\overline 3 ,\;a = 15.9307\left( 9 \right)\;\acute{\mathring{\mathrm{A}}} ,\;c = 9.9238\left( 6 \right)\;\acute{\mathring{\mathrm{A}}} ,\;V = 2181.1\left( 3 \right)\;{\acute{\mathring{\mathrm{A}}} ^3},\;Z = 6,\;{d_{\rm{x}}} = 1.822\;{\rm{g/c}}{{\rm{m}}^{\rm{3}}}\), Ni-N is \(2.1182\left( {12} \right) - 2.1498\left( {11} \right)\;\acute{\mathring{\mathrm{A}}} ,\) ∠Ni-N-N is 80.76(4)-82.27(4)°. According to the differential scanning calorimetry data in a range from 295 K to 310 K, there is a thermal anomaly with peaks at T1 = 299.6 K and T2 = 304.7 K. The crystal structural characteristics at 320 K are as follows: space group \(P\overline 3 \,1c,\;a = 9.2491\left( 4 \right)\;\acute{\mathring{\mathrm{A}}} ,\;c = 9.9713\left( 4 \right)\;\acute{\mathring{\mathrm{A}}} ,\;V = 738.72\left( 7 \right)\;{\acute{\mathring{\mathrm{A}}} ^3},\;Z = 2,\;{d_x} = 1.794\;{\rm{g/c}}{{\rm{m}}^3}\), Ni-N is \(2.1302\left( {14} \right)\;\acute{\mathring{\mathrm{A}}} \), ∠N-Ni-N is 80.96(8)°. With increasing temperature from 90 K to 320 K a decrease in the average Mo-O distance from \(1.769\;\acute{\mathring{\mathrm{A}}} \) to \(1.725\;\acute{\mathring{\mathrm{A}}} \) is observed in the structure. The comparative analysis of the interionic N-H…O and C-H…O contacts is carried out. The ex situ powder X-ray diffraction study of the formation process of metal and carbide phases by the [NiEn3]MoO4 thermal decomposition in the presence of LiH in the He atmosphere is performed. At the temperature of 1323 K a Mo2C and MoNi4 phase mixture forms in the first minute. With increasing keeping time the Ni2Mo4Cx phase forms.

Keywords

complex salt tris(ethylenediamine)nickel molybdate anion differential scanning calorimetry X-ray diffraction analysis crystal chemistry thermal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.-Z. Lin, G.-H. Han, F. Geng, and C. Ding. Acta Cryst., 2006, E62, 532–534.Google Scholar
  2. 2.
    F. H. Allen. Acta Crystallogr., 2002, B58(3–1), 380–388.CrossRefGoogle Scholar
  3. 3.
    M. Lutz. Acta. Cryst. Sect. C: Cryst. Struct. Comm., 2010, 66, 330–335.CrossRefGoogle Scholar
  4. 4.
    G. B. Jameson, R. Shneider, E. Dubler, and H. R. Oswald. Acta Cryst., 1982, B38, 3016–3020.CrossRefGoogle Scholar
  5. 5.
    A. S. Sukhih, S. P. Khranenko, S. P. Pishchur, and S. A. Gromilov. J. Struct. Chem., 2018, 59(3), 657–663.CrossRefGoogle Scholar
  6. 6.
    S. P. Khranenko, V. Y. Komarov, E. Y Gerasimov, A. V. Zadesenets, E. A. Maksimovsky, and S. A. Gromilov. J. Struct. Chem., 2017, 58(7), 1448–1452.CrossRefGoogle Scholar
  7. 7.
    S. A. Gromilov, E. Y. Gerasimov, S. P. Khranenko, V. Y. Komarov, and A. V. Zadesenets. J. Struct. Chem., 2017, 58(7), 1443–1447.CrossRefGoogle Scholar
  8. 8.
    S. P. Khranenko, A. S. Sukhih, S. P. Pishchur, P. S. Buneeva, V. Y. Komarov, and S. A. Gromilov. J. Struct. Chem., 2018, 59(8), 1960–1965.CrossRefGoogle Scholar
  9. 9.
    W. Kraus and G. Nolze. J. Appl. Crystallogr., 1996, 29(3), 301–303.CrossRefGoogle Scholar
  10. 10.
    Ya. Gibner and I. Vasilyeva. J. Therm. Anal., 1998, 53, 151–160.CrossRefGoogle Scholar
  11. 11.
    S. A. Gromilov, R. E. Nikolaev, and S. V. Cherepanova. J. Struct. Chem., 2018, 59(2), 395–397.CrossRefGoogle Scholar
  12. 12.
    A. V. Panchenko, N. D Tolstykh, and S. A Gromilov. J. Struct. Chem., 2014, 55(7), 1209–1214.CrossRefGoogle Scholar
  13. 13.
    A. Yelisseyev, A. Khrenov, V. Afanasiev, V. Pustovarov, S. Gromilov, A. Panchenko, N. Pokhilenko, and K. Litasov. Diam. Rel. Mater., 2015, 58, 69–77.CrossRefGoogle Scholar
  14. 14.
    A. Rodriguez-Navarro. J. Appl. Cryst., 2006, 39(6), 905–909.CrossRefGoogle Scholar
  15. 15.
    C. Prescher and V. B. Prakapenka. High Pres. Res., 2015, 35(3).Google Scholar
  16. 16.
    Powder Diffraction File. PDF-2. International Centre for Diffraction Data, USA.Google Scholar
  17. 17.
    Inorganic Crystal Structure Database. D-1754. Eggenstein-Leopoldshafen, Germany.Google Scholar
  18. 18.
    Bruker AXS Inc. APEX2 V2013.6-2, SAINT V8.32B and SADABS-2012/1. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
  19. 19.
    O. V. Dolomanov, L. J. Bourhis, R. J Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Cryst., 2009, 42, 339–341.CrossRefGoogle Scholar
  20. 20.
    G. M. Sheldrick. Acta Cryst., 2015, A71, 3–8.Google Scholar
  21. 21.
    G. M. Sheldrick. Acta Cryst., 2015, C71, 3–8.Google Scholar
  22. 22.
    A. L. Spek. Acta Cryst., 2009, D65, 148–155.Google Scholar
  23. 23.
    G. B. Jameson, R. Shneider, E. Dubler, and H. R. Oswald. Acta Cryst., 1982, B38, 3016–3020.CrossRefGoogle Scholar
  24. 24.
    F. L. Hirshfeld. Theor. Chim. Acta, 1977, 44(2), 129–138.CrossRefGoogle Scholar
  25. 25.
    M. A. Spackman and P. G. Byrom. Chem. Phys. Lett. 1997, 267(3–4), 215–220.CrossRefGoogle Scholar
  26. 26.
    M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. University of Western Australia, 2017. http://hirshfeldsurface.net.
  27. 27.
    D. Jayatilaka and D. J. Grimwood. Comput. Sci. — ICCS, 2003, 4, 142–151.Google Scholar
  28. 28.
    E. A. Bykova, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2012, 53(1), 186–190.Google Scholar
  29. 29.
    J. S. O. Evans, T. A Mary, and A. W. Sleight. J. Solid State Chem., 1998, 137, 148–160.CrossRefGoogle Scholar
  30. 30.
    D. A. Woodcock, P. Lightfoot, and C. Ritter. J. Solid State Chem., 2000, 149, 92–98.CrossRefGoogle Scholar
  31. 31.
    M. Wu, X. Liu, D. Chen, Q. Huang, H. Wu, and Y. Liu. Inorg. Chem., 2014, 53, 9206–9212.CrossRefGoogle Scholar
  32. 32.
    L. F. Kozin and N. V. Mashkova. Ukr. Himich. Zhurn, 2009, 75(11), 48–54.Google Scholar
  33. 33.
    L. F. Kozin and S. V. Volkov. Modern Energetics and Ecology: Problems and Prospects [in Russian]. Naukova Dumka: Kiev, 2006, 647.Google Scholar
  34. 34.
    H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, and N. Tomonaga. Carbon, 2006, 44, 2912–2918.CrossRefGoogle Scholar
  35. 35.
    Yu. I. Bauman, I. V. Mishakov, Yu. V. Rudneva, P. E. Plyusnin, Yu. V. Shubin, D. V. Korneev, and A. A. Vedyagin. Industr. & Eng. Chem. Res., 2018, in press. DOI:  https://doi.org/10.1021/acs.iecr.8b02186.

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Sukhikh
    • 1
    • 2
  • S. P. Khranenko
    • 1
  • V. Yu. Komarov
    • 1
    • 2
  • D. P. Pishchur
    • 1
  • R. E. Nikolaev
    • 1
  • P. S. Buneeva
    • 1
    • 2
  • P. E. Plyusnin’
    • 2
  • S. A. Gromilov
    • 1
    • 2
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations