Journal of Structural Chemistry

, Volume 60, Issue 5, pp 772–779 | Cite as

Prediction of 13C NMR Chemical Shifts of Quinolone Derivatives Based on DFT Calculations

  • X. L. YuEmail author
  • J. Y. Deng
  • J. F. Chen
  • H. Q. Yang


At present, there exists subjectivity in selecting descriptor sets for the quantitative structure property relationship (QSPR) models. A complete set is perfect, in which there is no any element redundant or needed to be added. This paper reports the complete sets of descriptors used to develop QSPR models for 13C NMR chemical shifts (δC parameters) of carbon atoms in quinolone derivatives. These descriptors in the complete sets used are calculated by applying the PBE1PBE functional of density functional theory (DFT) and the 6-311G(2d,2p) basis set. The multiple linear regression (MLR) technique and the support vector machine (SVM) algorithm are, respectively, used to develop linear and nonlinear QSPR models for δC parameters. The four QSPR models have the root mean square (RMS) errors less than 2.0 ppm, which approximately equal one fourth of the errors from the previous model. Further, our models have more samples in the test sets and less descriptors in the models. These results suggest that our four models of δC parameters have better statistical qualities. The feasibility of applying complete sets of descriptors to develop QSPR models for 13C NMR chemical shifts is demonstrated.


13C NMR chemical shifts DFT complete set of descriptors genetic algorithm MLR SVM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2019_1191_MOESM1_ESM.pdf (127 kb)
Prediction of 13C NMR Chemical Shifts of Quinolone Derivatives Based on DFT Calculations


  1. 1.
    S. Caprasecca, L. Cupellini, S. Jurinovich, D. Loco, F. Lipparini, and B. Mennucci. Theor. Chem. Acc., 2018, 137, 84.CrossRefGoogle Scholar
  2. 2.
    M. C. Caputo and P. F. Provasi, and S. P. A. Sauer. Theor. Chem. Acc., 2018, 137, 88.CrossRefGoogle Scholar
  3. 3.
    M. G. Chini, C. R. Jones, A. Zampella, M. V. D’Auria, B. Renga, S. Fiorucci, C. P. Butts, and G. Bifulco. J. Org. Chem., 2012, 77, 1489.CrossRefGoogle Scholar
  4. 4.
    J. M. Fonville, M. Swart, Z. Vokáčová, V. Sychrovský, J. E. Šponer, J. Šponer, C. W. Hilbers, F. M. Bickelhaupt, and S. S. Wijmenga. Chem. Eur. J., 2012, 18, 12372.CrossRefGoogle Scholar
  5. 5.
    M. Sun, I. Y. Zhang, A. Wu, and X. Xu. J. Chem. Phys., 2013, 138, 124113.CrossRefGoogle Scholar
  6. 6.
    Y. Yi, B. Adrjan, J. Wlodarz, J. Li, K. Jackowski, and S. Roszak. J. Mol. Struct., 2018, 1166, 304.CrossRefGoogle Scholar
  7. 7.
    B. Lučić, D. Amić, and N. Trinajstić. J. Chem. Inf. Comput. Sci., 2000, 40, 403.CrossRefGoogle Scholar
  8. 8.
    Y. Dai, K. Huang, X. Li, Z. Cao, Z. Zhu, and D. Yang. J. Cent. South. Univ. Technol., 2011, 18, 323.CrossRefGoogle Scholar
  9. 9.
    L. He. Molecular Structural Characterization and Further Quantitative Structural-Spectrum Relationships for Organic Compounds. Chongqing, China: Chongqing University, 2008.Google Scholar
  10. 10.
    H. Yuan, Y. Zhang, C. N. Chen, and M. Y. Li. J. Mol. Struct., 2018, 1155, 143.CrossRefGoogle Scholar
  11. 11.
    W. S. Hamama, A. E. E. Hassanien, and H. H. Zoorob. Synthetic Commun., 2014, 44, 1833.CrossRefGoogle Scholar
  12. 12.
    Y. Gong and L. Ding. 13C NMR Analysis of Natural Products, Yunan Science and Technology Press: Kunming. China, 2005.Google Scholar
  13. 13.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  14. 14.
    A. Petersson and M. A. Al-Laham. J. Chem. Phys., 1991, 94, 6081.CrossRefGoogle Scholar
  15. 15.
    C. Adamo and V. Barone. J. Chem. Phys., 1999, 110, 6158.CrossRefGoogle Scholar
  16. 16.
    M. J. Frisch, J. A. Pople, and J. S. Binkley. J. Chem. Phys., 1984, 80, 3265.CrossRefGoogle Scholar
  17. 17.
    K. Wolinski, J. F. Hinton, and P. Pulay. J. Am. Chem. Soc., 1990, 112, 8251.CrossRefGoogle Scholar
  18. 18.
    F. R. Burden and D. A. Winkler. J. Chem. Inf. Model., 2015, 55, 1529.CrossRefGoogle Scholar
  19. 19.
    J. Shadmanesh, A. P. Jadid, Z. Azari, M. Niazi, and M. S. Aghbolagh. Med. Chem. Res., 2014, 23, 2639.CrossRefGoogle Scholar
  20. 20.
    H. Tang, X. S. Wang, X. P. Huang, B. L. Roth, K. V. Butler, A. P. Kozikowski, M. Jung, and A. Tropsha. J. Chem. Inf. Model., 2009, 49, 461.CrossRefGoogle Scholar
  21. 21.
    X. L. Yu and R. Q. Yu. Ind. Eng. Chem. Res., 2013, 52, 11182.CrossRefGoogle Scholar
  22. 22.
    X. L. Yu and R. Q. Yu. Polym. Eng. Sci., 2013, 53, 2151.CrossRefGoogle Scholar
  23. 23.
    X. L. Yu, B. Yi, X. Y. Wang, and J F. Chen. Atmos. Environ., 2012, 51, 124.CrossRefGoogle Scholar
  24. 24.
    S. S. Keerthi and J. Lin. Neural Comput., 2003, 15, 1667.CrossRefGoogle Scholar
  25. 25.
    C. C. Chang and C. J. Lin. Intell. Syst. Technol., 2011, 2, 27.Google Scholar
  26. 26.
    Y. Y. Xu, X. L. Yu, and S. H. Zhang. J. Braz. Chem. Soc., 2013, 24, 1781.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • X. L. Yu
    • 1
    • 2
    Email author
  • J. Y. Deng
    • 1
  • J. F. Chen
    • 1
  • H. Q. Yang
    • 1
  1. 1.Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringHunanP. R. China
  2. 2.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityHunanP. R. China

Personalised recommendations