Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 5, pp 746–754 | Cite as

Stability, Electronic, and Structural Features of the Conformers of 2-Methyl-1,3,2-Diheterophosphinane 2-Oxide (Heteroatom = O, S, Se): DFT and NBO Investigations

  • M. Nasrolahi
  • R. GhiasiEmail author
  • F. Shafiee
Article
  • 5 Downloads

Abstract

In this study, the stability of 2-methyl-1,3,2-diheterophosphinane 2-oxide conformers (heteroatom = O, S, Se) is investigated at the B3LYP/6-311+G(d,p) level of theory. The total energy, dipole moment, the energies of frontier orbitals, and HOMO-LUMO gaps of these molecules are calculated. The NBO analysis is applied to illustrate the hyperconjugative anomeric effect on the conformers. The responsible interactions of this effect are determined. The interaction energy, off-diagonal elements, and the total steric exchange energy (TSEE) of these interactions and Wiberg indices of bond values are estimated. Also, changes in the calculated bond distances are explained based on the natural bond orbital (NBO) analysis.

Keywords

2-methyl-1,3,2-diheterophosphinane 2-oxide hyperconjugative anomeric effect natural bond orbital analysis DFT calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Khorana. Some Recent Developments in the Chemistry of Phosphate Esters of Biological Interest. John Wiley and Sons, Inc., New York, 1961.Google Scholar
  2. 2.
    R. S. Edmundson. Chem. Ind., 1967, 1809.Google Scholar
  3. 3.
    N. A. Loshadkin, V. V. Smirnov. A Review of Modern Literature on the Chemistry and Toxicology of Organophosphorus Inhibitors of Cholinesterases (Translated from Russian by G. M. Kosolapoff). Associated Technical Services, Inc., Glen Ridge, New Jersey, 1962.Google Scholar
  4. 4.
    R. D. O’Brien. Toxic Phosphorus Esters: Chemistry, Metabolism and Biological Effects. Academic Press: New York, 1960.Google Scholar
  5. 5.
    B. C. Saunders. Some Aspects of the Chemistry and Toxic Action of Organic Compounds Containing Phosphorus and Fluorine. Cambridge University Press: Cambridge, England, 1967.Google Scholar
  6. 6.
    E. L. Eliel, S. H. Wilen, and L. N. Mander. Stereochemistry of Organic Compounds. Wiley: New York, 1994.Google Scholar
  7. 7.
    G. M. Kellie and F. G. Ridell. Top. Stereochem., 1974, 8, 225.Google Scholar
  8. 8.
    E. L. Eliel and M. C. Knoeber. J. Am. Chem. Soc., 1968, 90, 3444.CrossRefGoogle Scholar
  9. 9.
    F. G. Ridell and J. T. Robinson. Tetrahedron, 1967, 23, 3417.CrossRefGoogle Scholar
  10. 10.
    K. Pihlaja. Acta Chem. Scand., 1948, 22, 716.CrossRefGoogle Scholar
  11. 11.
    W. G. Bentrude. In: Analysis, Dynamics and Stereoelectronic Effects / Ed. E. Juaristi. New York: VCH, 1995.Google Scholar
  12. 12.
    B. E. Maryanoff, R. O. Hutchins, and C. A. Maryanoff. Top. Stereochem., 1979, 11, 187.Google Scholar
  13. 13.
    D. G. Gorenstein. Chem. Rev., 1987, 87, 1049.CrossRefGoogle Scholar
  14. 14.
    W. G. Bentrude and H.-W. Tan. J. Am. Chem. Soc., 1973, 95, 4666.CrossRefGoogle Scholar
  15. 15.
    P. V. Nuffel, C. V. Alsenoy, A. T. H. Lenstra, and H. J. Geise. J. Mol. Struct., 1984, 125, 1.CrossRefGoogle Scholar
  16. 16.
    J. P. Majoral, C. Bergounhou, and J. Navech. J. Bull. Soc. Chim. Fr., 1973, 3146.Google Scholar
  17. 17.
    J.-F. Brault, J. P. Majoral, P. Savignac, and J. Navech. J. Bull. Soc. Chim. Fr., 1973, 3149.Google Scholar
  18. 18.
    G. R. J. Thatcher. The Anomeric Effect and Associated Stereoelectronic Effects. American Chemical Society, Washington, DC, 1992, 539.Google Scholar
  19. 19.
    E. Juaristi and G. Cuevas. Tetrahedron, 1992, 48, 5019.CrossRefGoogle Scholar
  20. 20.
    A. J. Kirby. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen. Springer: Heidelberg, Germany, 1983.CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09 (Version Revision A.02). Wallingford CT: Gaussian, Inc, 2009.Google Scholar
  22. 22.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.CrossRefGoogle Scholar
  23. 23.
    A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639.CrossRefGoogle Scholar
  24. 24.
    L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, and J. L. Radom. J. Chem. Phys., 1995, 103, 6104.CrossRefGoogle Scholar
  25. 25.
    A. D. Becke. J. Chem. Phys, 1993, 98, 5648.CrossRefGoogle Scholar
  26. 26.
    A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899.CrossRefGoogle Scholar
  27. 27.
    E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold. NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.Google Scholar
  28. 28.
    T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580.CrossRefGoogle Scholar
  29. 29.
    C. L. Perrin, K. B. Armstrong, and M. A. Fabian. J. Am. Chem. Soc., 1994, 116, 715.CrossRefGoogle Scholar
  30. 30.
    C. James, A. Amal Raj, R. Reghunathan, I. H. Joe, and V. S. Jayakumar. J. Raman Spectrosc., 2006, 37, 1381.CrossRefGoogle Scholar
  31. 31.
    L. J. Na, Z. Rang, and Y. S. Fang. J. Zhejiang Univ. Sci., 2005, 6B, 584.CrossRefGoogle Scholar
  32. 32.
    Y. Yang, W. J. Zhang, and X. M. Gao. Int. J. Quantum Chem., 2006, 106, 1199.CrossRefGoogle Scholar
  33. 33.
    J.-P. Praly and R. U. Lemieux. Can. J. Chem., 1987, 213.Google Scholar
  34. 34.
    P. A. Christiansen and W. E. Palke. J. Chem. Phys., 1977, 67, 57.CrossRefGoogle Scholar
  35. 35.
    V. F. Weisskopf. Science, 1975, 187, 605.CrossRefGoogle Scholar
  36. 36.
    J. K. Badenhoop and F. Weinhold. Int. J. Quantum. Chem., 1999, 72, 269.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Department of Chemistry, Faculty of Science, East Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations