Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 5, pp 713–726 | Cite as

A Comparison of NH 5 2+ and CH 5 + Ions and Deuterated Variants of NHxD (5− x) 2+ : Real or Artefactual Rotation?

  • M. MonajjemiEmail author
Article

Abstract

Protonated NH 5 2+ has unusual vibrational and rotational behavior because its three nonequivalent equilibrium structures have nearly identical energies and its five protons scramble freely, while in the CH 5 + structure, five hydrogen atoms are bonded to the carbon atom by sharing eight valence electrons. Although a few theoretical papers have been published on quantum mechanics of those systems. Better understanding requires spectral and conformational analyses. CASSCF (8, 9) calculations with the correlation consistent polarized valence double and triple zeta basis sets are accomplished for estimating the vibrational data and zero-point energies of those two ions. The present results indicate that normal modes agree qualitatively with NHxD (5- x) 2+ and one of the normal modes indicates that NH 5 2+ is highly fluxional and has a complex spectrum while the broken N-H bonds are reformed all the time. The spectrum of mode 10 is highly complex with red and some blue shifts. In particular, modes 6 and 12 are attributed to the rapid coupling of the N-H stretching normal mode to motions more closely related to isomerization, i.e., bending or rocking. There have been long debates whether NH 5 2+ has a structure at all or not and if the rotation is real or artefactual.

Keywords

quantum rotation NH52+ ion CH5+ ion deuterated variants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Marx and M. Parrinello. Science, 1999, 284, 59.CrossRefGoogle Scholar
  2. 2.
    P. R. Schreiner. Angew. Chem. Int. Ed., 2000, 39(18), 3239.CrossRefGoogle Scholar
  3. 3.
    A. B. McCoy, B. J. Braams, A. Brown, Xinchuan Huang, Zhong Jin, and Joel M. Bowman. J. Phys. Chem. A, 2004, 108, 4991.CrossRefGoogle Scholar
  4. 4.
    A. L. Kaledin, S. D. Kunikeev, and H. S. Taylor. J. Phys. Chem. A, 2004, 108, 4995.CrossRefGoogle Scholar
  5. 5.
    A. Brown, B. J. Braams, K. Christoffel, Z. Jin, and J. M. Bowman. J. Chem. Phys., 2003, 119, 8790.CrossRefGoogle Scholar
  6. 6.
    A. Brown, A. B. McCoy, B. J. Braams, Z. Jin, and J. M. Bowman. J. Chem. Phys., 2004, 121, 4105.CrossRefGoogle Scholar
  7. 7.
    G. A. Olah and G. Rasul. Acc. Chem. Res., 1997, 30, 245–250.CrossRefGoogle Scholar
  8. 8.
    G. A. Olah, G. K. S. Prakash, and J. Sommer. Superacids. Wiley and Sons: New York a.o., 1985, 371.Google Scholar
  9. 9.
    G. A. Olah, G. K. S. Prakash, R. E. Williams, L. D. Field, and K. Wade. Hypercarbon Chemistry. Wiley: New York, 1987, 191–213.Google Scholar
  10. 10.
    T. Oka. Trans. Roy. Soc. Lond. A, 1988, 324, 81–95.CrossRefGoogle Scholar
  11. 11.
    E. Herbst. J. Phys. Chem. A, 2005, 109, 4017–4029.CrossRefGoogle Scholar
  12. 12.
    D. Gerlich. Phys. Chem. Chem. Phys., 2005, 7, 1583–1591.CrossRefGoogle Scholar
  13. 13.
    K. C. Thompson, D. L. Crittenden, and M. J. T. Jordan. J. Am. Chem. Soc., 2005, 127, 4954–4958.CrossRefGoogle Scholar
  14. 14.
    P. R. Schreiner, S.-J. Kim, H. F. Schaefer III, and P. von. R. Schleyer. J. Chem. Phys., 1993, 99, 3716.CrossRefGoogle Scholar
  15. 15.
    V. Dyczmons and W. Kutzelnigg. Theor. Chim. Acta (Berlin), 1974, 33, 239–247.CrossRefGoogle Scholar
  16. 16.
    H. Müller, W. Kutzelnigg, J. Noga, and W. Klopper. J. Chem. Phys., 1997, 106, 1863–1869.CrossRefGoogle Scholar
  17. 17.
    D. Marx and M. Parrinello. Nature, 1995, 375, 216–218.CrossRefGoogle Scholar
  18. 18.
    S. D. Ivanov, O. Asvany, A. Witt, E. Hugo, G. Mathias, B. Redlich, D. Marx, and S. Schlemmer. Nature Chem., 2010, 298–302.Google Scholar
  19. 19.
    S. Schlemmer, E. Lescop, J. von Richthofen, D. Gerlich, and M. A. Smith. J. Chem. Phys., 2002, 117, 2068–2075.CrossRefGoogle Scholar
  20. 20.
    S. Schlemmer and O. Asvany. J. Phys.: Conf., 2005, 4, 134–141.Google Scholar
  21. 21.
    D. Marx and J. Hutter. Ab initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge Univ. Press, 2009.Google Scholar
  22. 22.
    A. J. R. Heck L. J. de Koning, and N. M. M. Nibbering. J. Am. Soc., Mass. Spectrom., 1991, 2, 453.CrossRefGoogle Scholar
  23. 23.
    T. Lu and F. Chen. Acta Chim. Sinica, 2011, 69, 2393–2406.Google Scholar
  24. 24.
    T. Lu and F. Chen. J. Mol. Graph. Model, 2012, 38, 314–323.CrossRefGoogle Scholar
  25. 25.
    T. Lu and F. Chen. J. Comp. Chem., 2012, 33, 580–592.CrossRefGoogle Scholar
  26. 26.
    R. F. W. Bader. Atoms in Molecule: A Quantum Theory. Oxford Univ. Press: Oxford, 1990.Google Scholar
  27. 27.
    A. D. Becke and K. E. Edgecombe. J. Chem. Phys., 1990, 92, 5397.CrossRefGoogle Scholar
  28. 28.
    A. Savin et al. Angew. Chem. Int. Ed. Engl., 1992, 31, 187.CrossRefGoogle Scholar
  29. 29.
    V. Tsirelson and A. Stash. Chem. Phys. Lett., 2002, 351, 142.CrossRefGoogle Scholar
  30. 30.
    H. L. Schmider and A. D. Becke. J. Mol. Struct. (THEOCHEM), 527, 51.Google Scholar
  31. 31.
    C. Aslangul et al. Adv. Quantum Chem., 1972, 6, 93.CrossRefGoogle Scholar
  32. 32.
    R. Parr et al. J. Phys. Chem. A, 2005, 109, 3957.CrossRefGoogle Scholar
  33. 33.
    S. Noorizadeh and E. Shakerzadeh. Phys. Chem. Chem. Phys., 2010, 12, 4742.CrossRefGoogle Scholar
  34. 34.
    J. S. Murray and P. Politzer. J. Mol. Struct. (THEOCHEM), 1994, 307, 55.CrossRefGoogle Scholar
  35. 35.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen et al. J. Comput. Chem., 2004, 14(11), 1347–1363.CrossRefGoogle Scholar
  36. 36.
    T. H. Dunning Jr. J. Chem. Phys., 1989, 90, 1007.CrossRefGoogle Scholar
  37. 37.
    Y. Zhao and D. G. Truhlar. Theor. Chem. Account., 2008, 120, 215–241.CrossRefGoogle Scholar
  38. 38.
    W. Kohn, L. J. Sham. Phys. Rev., 1965, 140A, 1133–1138.CrossRefGoogle Scholar
  39. 39.
    J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865–3868.CrossRefGoogle Scholar
  40. 40.
    A. R. Ilkhani and M. Monajjemi. Comput. Theor. Chem., 2015, 1074, 19–25.CrossRefGoogle Scholar
  41. 41.
    M. Monajjemi and J. E. Boggs. J. Phys. Chem. A, 2013, 117, 1670–1684, DOI:  https://doi.org/10.1021/jp312073q.CrossRefGoogle Scholar
  42. 42.
    M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin. J. Phys. Chem. C, 2010, 114 15315, DOI:  https://doi.org/10.1021/jp104274z.CrossRefGoogle Scholar
  43. 43.
    M. Monajjemi. J. Mol. Modeling, 2014, 20, 2507, DOI:  https://doi.org/10.1007/s00894-014-2507-y.CrossRefGoogle Scholar
  44. 44.
    M. Monajjemi. Theor. Chem. Ace, 2015, 134, 77, DOI  https://doi.org/10.1007/s00214-015-1668-9.CrossRefGoogle Scholar
  45. 45.
    M. Monajjemi. Struct. Chem., 2012, 23, 551, DOI:  https://doi.org/10.1007/s11224-011-9895-8.CrossRefGoogle Scholar
  46. 46.
    M. Monajjemi. Chem. Phys., 2013, 425, 29–45, DOI:  https://doi.org/10.1016/j.chemphys.2013.07.014.CrossRefGoogle Scholar
  47. 47.
    H. Jalilian and M. Monajjemi. Jpn. J. Appl. Phys., 2015, 54, 085101, DOI:  https://doi.org/10.7567/JJAP.54.085101.CrossRefGoogle Scholar
  48. 48.
    M. Monajjemi and M. Khaleghian. J. Cluster Sci., 2011, 22(4), 673–692, DOI:  https://doi.org/10.1007/s10876-011-0414-2.CrossRefGoogle Scholar
  49. 49.
    M. Monajjemi, M. Falahati, and F. Mollaamin. Ionics, 2013, 19(1), 155–164, DOI:  https://doi.org/10.1007/s11581-012-0708-x.CrossRefGoogle Scholar
  50. 50.
    M. Monajjemi. Biophys. Chem., 2015, 207, 114–127, DOI:  https://doi.org/10.1016/j.bpc.2015.10.003.CrossRefGoogle Scholar
  51. 51.
    L. Mahdavian and M. Monajjemi. Microelectron. J., 2010, 41(2–3), 142–149, DOI:  https://doi.org/10.1016/j.mejo.2010.01.011.CrossRefGoogle Scholar
  52. 52.
    M. Monajjemi. J. Mol. Liquids, 2017, 230, 461–472, DOI:  https://doi.org/10.1016/j.mejo.2010.01.011.CrossRefGoogle Scholar
  53. 53.
    M. Monajjemi. Macedonian J. Chem., Chem. Engineering, 2017, 36(1), 101–118.CrossRefGoogle Scholar
  54. 54.
    H. Jacobsen. Can. J. Chem., 2008, 86(7), 695–702,  https://doi.org/10.1139/v08-052.CrossRefGoogle Scholar
  55. 55.
    E. Herbst. J. Phys. Chem. A, 2005, 109, 4017–4029.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations