Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 5, pp 692–712 | Cite as

Structural Diversity of Dimer Clusters Based on the Octadecahydro-Eicosaborate Anion

  • V. V. AvdeevaEmail author
  • E. A. Malinina
  • K. Yu. Zhizhin
  • E. Bernhardt
  • N. T. Kuznetsov
Article
  • 10 Downloads

Abstract

The work summarizes the data on currently known dimeric boron cluster anions with the general formula [B20H18]2−. Their preparation, structure, and the methods of structural modification are considered. The data on the reactivity of boron dimeric clusters in redox, substitution, complexation, and condensation reactions are presented. The isomerism of dimeric polyhedral boron cluster anions associated with the formation of substituted derivatives and coordination compounds is considered. The methods of reversible transformation of isomers in salts and coordination compounds in solutions and single crystals are discussed.

Keywords

boron cluster anions three-dimensional aromaticity isomerization complexation substitution reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. N. Lipscomb. Boron Hydrides. New York, Amsterdam: W. H. Benjamin, 1963.Google Scholar
  2. 2.
    E. L. Muetterties, J. H. Balthis, Y. T. Chia, W. H. Knoth, and H. C. Miller. Inorg. Chem., 1964, 3, 444.CrossRefGoogle Scholar
  3. 3.
    E. L. Muetterties and W. H. Knoth. Polyhedral Boranes. Dekker, New York, 1968.Google Scholar
  4. 4.
    N. N. Greenwood and A. Earnshaw. Chemistry of the Elements (2nd ed.). Butterworth-Heinemann, 1997.Google Scholar
  5. 5.
    K. Wade. Adv. Inorg. Chem. Radiochem., 1978, 18, 1.Google Scholar
  6. 6.
    J. Aihara. J. Am. Chem. Soc., 1978, 100, 3339.CrossRefGoogle Scholar
  7. 7.
    Boron Hydride Chemistry. / Ed. E. L. Muetterties. Acad. Press: New York, 1975.Google Scholar
  8. 8.
    A. Kaczmarczyk, R. D. Dobrott, and W. N. Lipscomb. Proc. Natl. Acad. Sci. USA, 1962, 48, 729.CrossRefGoogle Scholar
  9. 9.
    B. L. Chamberland and E. L. Muetterties. Inorg. Chem., 1964, 3, 1450.CrossRefGoogle Scholar
  10. 10.
    M. F. Hawthorne, R. L. Pilling, P. F. Stokely, and P. M. Garrett. J. Am. Chem. Soc., 1963, 85, 3704.Google Scholar
  11. 11.
    E. A. Malinina, V. V. Avdeeva, L. V. Goeva et al. Russ. J. Inorg. Chem., 2011, 56(5), 687.  https://doi.org/10.1134/S0036023611050160].CrossRefGoogle Scholar
  12. 12.
    M. F. Hawthorne and R. L. Pilling. J. Am. Chem. Soc., 1966, 88, 3873.CrossRefGoogle Scholar
  13. 13.
    Z. B. Curtis, C. Young, R. Dickerson, and A. Kaczmarczyk. Inorg. Chem., 1974, 13, 1760.CrossRefGoogle Scholar
  14. 14.
    W. N. Lipscomb and M. F. Hawthorne. J. Am. Chem. Soc., 1962, 84, 3026.CrossRefGoogle Scholar
  15. 15.
    F. Li, K. Shelly, C. B. Knobler, and M. F. Hawthorne. Angew. Chem., Int. Ed., 1998, 37, 1865.CrossRefGoogle Scholar
  16. 16.
    M. F. Hawthorne, K. Shelly, and F. Li. Chem. Commun., 2002, 547.Google Scholar
  17. 17.
    M. F. Hawthorne, R. L. Pilling, and P. F. Stokely. J. Am. Chem. Soc., 1965, 87, 1893.CrossRefGoogle Scholar
  18. 18.
    M. F. Hawthorne, R. L. Pilling, P. F. Stokely, and P. M. Garrett. J. Am. Chem. Soc., 1963, 85, 3704.Google Scholar
  19. 19.
    R. A. Watson-Clark, C. B. Knobler, and M. F. Hawthorne, J. Am. Chem. Soc., 1966, 35, 2963.Google Scholar
  20. 20.
    M. F. Hawthorne, R. L. Pilling, and P. M. Garrett. J. Am. Chem. Soc., 1965, 87, 4740.CrossRefGoogle Scholar
  21. 21.
    K. Shelly, F. Li, R. A. Watson-Clark, M. F. Hawthorne. In: Advances in Neutron Capture Therapy. Volume II, Chemistry and Biology. / Eds. B. Larsson, J. Crawford, and R. Weinrich. Elsevier Science: Amsterdam, 1997, 30–34.Google Scholar
  22. 22.
    D. A. Feakes, K. Shelly, C. B. Knobler, and M. F. Hawthorne. Proc. Natl. Acad. Sci. USA, 1994, 91, 3029.CrossRefGoogle Scholar
  23. 23.
    E. M. Georgiev, K. Shelly, D. A. Feakes, J. Kuniyoshi, S. Romano, and M. F. Hawthorne. Inorg. Chem., 1996, 35, 5412.CrossRefGoogle Scholar
  24. 24.
    F. Li, K. Shelly, R. R. Kane, C. B. Knobler, and M. F. Hawthorne. Angew. Chem., Int. Ed., 1996, 35, 2646.CrossRefGoogle Scholar
  25. 25.
    F. Li, K. Shelly, R. R. Kane, C. B. Knobler, and M. F. Hawthorne. J. Am. Chem. Soc., 1996, 118, 6506.CrossRefGoogle Scholar
  26. 26.
    I. B. Sivaev, A. V. Prikaznov, and D. Naoufal. Collect. Czech. Chem. Commun., 2010, 75, 1149.CrossRefGoogle Scholar
  27. 27.
    K. Yu. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov. Russ. J. Inorg. Chem., 2010, 55, 2089.CrossRefGoogle Scholar
  28. 28.
    K. Shelly, D. A. Feakes, and M. F. Hawthorne. Proc. Natl. Acad. Sci. USA, 1992, 89, 9039.CrossRefGoogle Scholar
  29. 29.
    E. A. Il’inchik, T. M. Polyanskaya, M. K. Drozdova, K. G. Myakishev, V. N. Ikorskii, and V. V. Volkov. Russ. J. Gen. Chem., 2005, 75, 1545.CrossRefGoogle Scholar
  30. 30.
    V. V. Avdeeva, E. A. Malinina, L. V. Goeva et al. Dokl. Chem., 2017, 474, 141.CrossRefGoogle Scholar
  31. 31.
    Zh. Zhank. Acta Cryst., 1989, 45, 333.CrossRefGoogle Scholar
  32. 32.
    D. R. Pearson. J. Am. Chem. Soc., 1963, 85, 3533.CrossRefGoogle Scholar
  33. 33.
    E. A. Malinina, V. V. Avdeeva, L. V. Goeva, and N. T. Kuznetsov. Russ. J. Inorg. Chem., 2010, 55, 2148.CrossRefGoogle Scholar
  34. 34.
    V. V. Avdeeva, E. A. Malinina, I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov. Crystals, 2016, 6, 60.CrossRefGoogle Scholar
  35. 35.
    E. O. Firsova, V. V. Avdeeva, V. I. Privalov et al. Dokl. Chem., 2015, 465, 291.CrossRefGoogle Scholar
  36. 36.
    V. V. Avdeeva, M. I. Buzin, E. A. Malinina, N. T. Kuznetsov, and A. V. Vologzhanina. Cryst. Eng. Comm., 2015, 17, 8870.CrossRefGoogle Scholar
  37. 37.
    V. V. Avdeeva, I. N. Polyakova, L. V. Goeva et al. Dokl. Chem., 2011, 437, 63.CrossRefGoogle Scholar
  38. 38.
    V. V. Avdeeva, A. V. Vologzhanina, M. I. Buzin, A. O. Dmitrienko, P. V. Dorovatovskii, E. A. Malinina, N. T. Kuznetsov, E. D. Voronova, and Y. V. Zubavichus. Chem. Eur. J., 2017, 23, 16819.CrossRefGoogle Scholar
  39. 39.
    J. Zhang, M. Zhang, Y. Zhao, B. Chen, and C.-C. Sun. J. Comput. Chem., 2006, 27, 1817.CrossRefGoogle Scholar
  40. 40.
    H. Yanjiu and Y. Yingyong. Chem. Res. Application (Chinese), 2008, 20, 16.Google Scholar
  41. 41.
    E. Bernhardt, D. J. Brauer, M. Finze, and H. Willner. Angew. Chem. Int. Ed., 2007, 46, 2927.CrossRefGoogle Scholar
  42. 42.
    I. B. Sivaev, V. I. Bregadze, and S. Sjöberg. Collect. Czech. Chem. Commun., 2002, 67, 679.CrossRefGoogle Scholar
  43. 43.
    M. Vlasse, M. Boiret, R. Naslain, J. S. Kasper, and K. Ploog. Chimie du solide. Compt. Rend. C, 1978, 287, 27.Google Scholar
  44. 44.
    M. Vlasse, R. Naslain, J. S. Kasper, and K. Ploog. J. Solid State Chem., 1979, 28, 289.CrossRefGoogle Scholar
  45. 45.
    M. Vlasse, R. Naslain, J. S. Kasper, and K. Ploog. J. Less-Common Metals, 1979, 67, 1.CrossRefGoogle Scholar
  46. 46.
    H. L. Yakel. Boron Rich Solids. In: AIP Conf. Proc., New York, 1986, 140, 97–108.CrossRefGoogle Scholar
  47. 47.
    J. K. Burdett, E. Canadell. Inorg. Chem., 1991, 30, 1991.CrossRefGoogle Scholar
  48. 48.
    W. Hayami. J. Solid State Chem., 2015, 221, 378.CrossRefGoogle Scholar
  49. 49.
    J. S. Kasper, M. Vlasse, and R. Naslain. J. Solid State Chem., 1977, 20, 281.CrossRefGoogle Scholar
  50. 50.
    I. Higashi, T. Sakurai, and T. Atoda. J. Solid State Chem., 1977, 20, 67.CrossRefGoogle Scholar
  51. 51.
    R. E. Hughes, M. E. Leonowicz, J. T. Lemley, and L.-T. Tai. J. Am. Chem. Soc., 1977, 99, 5507.CrossRefGoogle Scholar
  52. 52.
    I. Higashi. J. Solid State Chem., 2000, 154, 168.CrossRefGoogle Scholar
  53. 53.
    N. E. Miller, J. A. Forstner, and E. L. Muetterties. Inorg. Chem., 1964, 3, 1690.CrossRefGoogle Scholar
  54. 54.
    J. H. Enemark, L. B. Friedman, J. A. Hartsuck, and W. N. Lipscomb. J. Am. Chem. Soc., 1966, 88, 3659.CrossRefGoogle Scholar
  55. 55.
    J. H. Enemark, L. B. Friedman, and W. N. Lipscomb. Inorg. Chem., 1966, 5, 2165.CrossRefGoogle Scholar
  56. 56.
    O. Shameema, B. Pathak, and E. D. Jemmis. Inorg. Chem., 2008, 47, 4375.CrossRefGoogle Scholar
  57. 57.
    P. Kaur, S. D. Perera, T. Jelinek, B. Stibr, J. D. Kennedy, W. Clegg, and M. Thornton-Pett. Chem. Commun., 1997, 2, 217.CrossRefGoogle Scholar
  58. 58.
    L. B. Friedman, R. D. Dobrott, and W. N. Lipscomb. J. Am. Chem. Soc., 1963, 85, 3505.CrossRefGoogle Scholar
  59. 59.
    N. E. Miller and E. L. Muetterties. J. Am. Chem. Soc., 1963, 85, 3506.CrossRefGoogle Scholar
  60. 60.
    R. D. Dobrott, L. B. Friedman, and W. N. Lipscomb. J. Chem. Phys., 1964, 40, 866.CrossRefGoogle Scholar
  61. 61.
    L. B. Friedman. Studies on Boron Hydrides. Harvard University, 1966.Google Scholar
  62. 62.
    N. E. Miller. Eicosaborane(16) preparation. In: du Pont de Nemours, E.I. and Co. 1968. US 3,404,959.Google Scholar
  63. 63.
    D. Hnyk, J. Holub, T. Jelinek, J. Machacek, and M. G. S. Londesborough. Collect. Czech. Chem. Commun., 2010, 75, 1115.CrossRefGoogle Scholar
  64. 64.
    F. Schlueter and E. Bernhardt. Z. Anorg. Allg. Chem., 2012, 638, 594.CrossRefGoogle Scholar
  65. 65.
    F. Schlüter. Die Chemie der closo-Borate [BnHn]2− (n = 6–9, 11) und [B21H18]−. Bergische Universität Wuppertal, 2012.Google Scholar
  66. 66.
    S. M. Eyrilmez, E. Bernhardt, J. Z. Davalos, M. Lepsik, P. Hobza, K. I. Assaf, W. M. Nau, J. Holub, J. M. Oliva-Enrich, J. Fanfrlik, and D. Hnyk. Phys. Chem. Chem. Phys., 2017, 19, 11748.CrossRefGoogle Scholar
  67. 67.
    A. R. Pitochelli and M. F. Hawthorne. J. Am. Chem. Soc., 1962, 84, 3218.CrossRefGoogle Scholar
  68. 68.
    F. P. Olsen, R. C. Vasavada, and M. F. Hawthorne. J. Am. Chem. Soc., 1968, 90, 3946.CrossRefGoogle Scholar
  69. 69.
    A. A. Attia, A. Lupan, and R. Bruce King. Phys. Chem. Chem. Phys., 2016, 18, 11707.CrossRefGoogle Scholar
  70. 70.
    W. N. Lipscomb. J. Less-Common Met., 1981, 82, 1.CrossRefGoogle Scholar
  71. 71.
    M. M. Balakrishnarajan and E. D. Jemmis. J. Am. Chem. Soc., 2000, 122, 4516.CrossRefGoogle Scholar
  72. 72.
    E. D. Jemmis, M. M. Balakrishnarajan, and P. D. Pancharatna. J. Am. Chem. Soc., 2001, 123, 4313.CrossRefGoogle Scholar
  73. 73.
    E. D. Jemmis, M. M. Balakrishnarajan, and P. D. Pancharatna. Inorg. Chem., 2001, 40, 1730.CrossRefGoogle Scholar
  74. 74.
    E. D. Jemmis, M. M. Balakrishnarajan, and P. D. Pancharatna. Chem. Rev., 2002, 102, 93.CrossRefGoogle Scholar
  75. 75.
    E. D. Jemmis and E. G. Jayasree. Acc. Chem. Res., 2003, 36, 816.CrossRefGoogle Scholar
  76. 76.
    E. D. Jemmis and P. D. Pancharatna. Appl. Organomet. Chem., 2003, 17, 480.CrossRefGoogle Scholar
  77. 77.
    E. D. Jemmis, B. Pathak, and A. Anoop. Inorg. Chem., 2005, 44, 7184.CrossRefGoogle Scholar
  78. 78.
    O. Shameema and E. D. Jemmis. Comput. Inorg. Bioinorg. Chem., 2009, 539.Google Scholar
  79. 79.
    K. Vidya and E. D. Jemmis. J. Organomet. Chem., 2015, 798, 91.CrossRefGoogle Scholar
  80. 80.
    I. B. Sivaev, A. Kayumov, A. B. Yakushev, K. A. Solntsev, and N. T. Kuznetsov. Koord. Khimiya, 1989, 15, 1466.Google Scholar
  81. 81.
    S. Koerbe, P. J. Schreiber, and J. Michl. Chem. Rev., 2006, 106, 5208.CrossRefGoogle Scholar
  82. 82.
    C. Douvris and J. Michl. Chem. Rev., 2011, 113, PR179.CrossRefGoogle Scholar
  83. 83.
    M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, and P. A. Wegner. J. Am. Chem. Soc., 1968, 90, 879.CrossRefGoogle Scholar
  84. 84.
    V. Koprda and V. Scasnar. J. Radioanal. Chem., 1979, 51, 245.CrossRefGoogle Scholar
  85. 85.
    T. Popova, A. Zaulet, F. Teixidor, R. Alexandrova, and C. Vinas. J. Organomet. Chem., 2013, 747, 229.CrossRefGoogle Scholar
  86. 86.
    S. H. Strauss. Chem. Rev., 1993, 93, 927.CrossRefGoogle Scholar
  87. 87.
    C. A. Reed. Acc. Chem. Res., 1998, 31, 133.CrossRefGoogle Scholar
  88. 88.
    C. Knapp. Compr. Inorg. Chem. II, 2013, 1, 651.Google Scholar
  89. 89.
    I. M. Riddlestone, A. Kraft, J. Schaefer, and I. Krossing. Angew. Chem. Int. Ed., 2018, 57, 13982.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Avdeeva
    • 1
    Email author
  • E. A. Malinina
    • 1
  • K. Yu. Zhizhin
    • 1
  • E. Bernhardt
    • 2
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Anorganische ChemieBergische Universität WuppertalWuppertalGermany

Personalised recommendations