Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 5, pp 679–691 | Cite as

Morphotropism of Rare-Earth Orthoborates RBO3

  • P. P. FedorovEmail author
Article
  • 10 Downloads

Abstract

A diagram in the coordinates “temperature-ionic radius” is built for polymorphic and morphotropic transitions in a series of REE orthoborates. The stability fields are determined for the structural types of calcite, aragonite, vaterite, pseudo-vaterite, H-LaBO3, and L-SmBO3. The temperatures of some metastable phase transformations are estimated.

Keywords

rare earth elements borates polymorphism morphotropism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Leonyuk and L. I. Leonyuk. Crystal Chemistry of Anhydrous Borates [in Russian]. Izdatelstvo MGU: Moskva, 1983.Google Scholar
  2. 2.
    R. S. Bubnova and S. K. Filatov. High-Temperature Crystal Chemistry of Borates and Borosilicates [in Russian]. Nauka: Moskva, 2008.Google Scholar
  3. 3.
    A. E. Kokh, N. G. Kononova, T. B. Bekker et al. Russian J. Inorg. Chem, 2004, 49, 984.Google Scholar
  4. 4.
    N. G. Furmanova, B. A. Maksimov, V. N. Molchanov et al. Crystallogr. Rep., 2006, 51, 219.CrossRefGoogle Scholar
  5. 5.
    E. L. Belokoneva, A. G. Ivanova, O. V. Dmitrieva et al. Zh. Neorg. Khim., 2006, 51, 939 [in Russian].Google Scholar
  6. 6.
    T. B. Bekker, S. V. Rashchenko, Y. V. Seryotkin, and P. P. Fedorov. J. Amer. Ceram. Soc., 2018, 101, 450.CrossRefGoogle Scholar
  7. 7.
    C. Chen, T. Sasaki, R. Li et al. Nonlinear Optical Borate Crystals. Viley-VCH: Weinheim, 2012.CrossRefGoogle Scholar
  8. 8.
    P. P. Fedorov, A. E. Kokh, and N. G. Kononova. Russian Chem. Rev., 2002, 71, 651.CrossRefGoogle Scholar
  9. 9.
    A. V. Egorysheva and V. M. Skorikov. Inorg. Mater., 2009, 45, 1461.CrossRefGoogle Scholar
  10. 10.
    T. B. Bekker, P. P. Fedorov, and A. E. Kokh. Phase Formation and Crystal Growth in the Quadruple Reciprocal System Na, Ba, B // O, F [in Russian]. Izdatelstvo SO RAN: Novosibirsk, 2016.Google Scholar
  11. 11.
    N. I. Leonyuk, V. V. Maltsev. Single Crystals of Refractory Borates [in Russian]. GEOS: Moskva, 2016.Google Scholar
  12. 12.
    P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. Opt. Comm., 2000, 174, 467.CrossRefGoogle Scholar
  13. 13.
    X. Long, X. Lin, Z. Hu et al. J. Alloys Compd., 2002, 347, 52.CrossRefGoogle Scholar
  14. 14.
    G. Corbel, R. Retoux, and M. Leblanc. J. Solid State Chem., 1998, 139, 52.CrossRefGoogle Scholar
  15. 15.
    Y. M. Andreev, A. E. Kokh, K. A. Kokh et al. Opt. Mater., 2017, 66, 94.CrossRefGoogle Scholar
  16. 16.
    W. W. Moses, M. J. Weber, S. E. Derenzo, P. Berdah. In: Proc. Int. Conf. Inorg. Scintillators and Their Applications, 1997, 22–25.Google Scholar
  17. 17.
    P. A. Rodnyi. Radiat. Meas., 2001, 33, 605.CrossRefGoogle Scholar
  18. 18.
    A. W. Veenis and A. Bril. Philips J. Res., 1978, 33, 124.Google Scholar
  19. 19.
    X. C. Jiang, C. H. Yan, L. D. Sun, Z. G. Wei, and C. S. Liao. J. Solid State Chem., 2003, 175, 251.CrossRefGoogle Scholar
  20. 20.
    J. Fan, Z. Lin, L. Zhang, and G. Wang. J. Phys. D. Appl. Phys., 2006, 39, 3226.CrossRefGoogle Scholar
  21. 21.
    D. Lu, Z. Pan, Y. Haohai et al. Opt. Mater. Express, 2015, 5, 1822.CrossRefGoogle Scholar
  22. 22.
    P. P. Fedorov. Crystallogr. Rep., 1995, 40, 278.Google Scholar
  23. 23.
    P. P. Fedorov and B. P. Sobolev. Crystallogr. Rep., 1995, 40, 284.Google Scholar
  24. 24.
    P. P. Fedorov, M. V. Nazarkin, and R. M. Zakalyukin. Crystallogr. Rep., 2002, 47, 281.CrossRefGoogle Scholar
  25. 25.
    V. M. Goldschmidt and H. Hauptmann. Nach. Ges. Wiss. Gott. Math-Phys. Kl., 1932, 53.Google Scholar
  26. 26.
    E. M. Levin, R. S. Roth, and J. B. Martin. Amer. Miner., 1961, 46, 1030.Google Scholar
  27. 27.
    R. S. Roth, J. L. Waring, E. M. Levin. In: Rare Earth Research II. Proc. 3rd Conf. Rare Earth Research, 1963, 153.Google Scholar
  28. 28.
    E. M. Levin. In: E. M. Levin, C. R. Robbins, H. F. McMurdie. Phase Diagrams for Ceramists. Amer. Ceram. Soc.: Columbus, 1987.Google Scholar
  29. 29.
    D. A. Keszler and H. Sun. Acta Cryst., 1988, C44, 1505.Google Scholar
  30. 30.
    J. R. Cox and D. A. Keszler. Acta Cryst., 1994, C50, 1857.Google Scholar
  31. 31.
    S. C. Abrahams, J. L. Bernstein, and E. T. Keve. J. Appl. Cryst., 1971, 4, 284.CrossRefGoogle Scholar
  32. 32.
    E. J. Felten. J. Inorg. Nucl. Chem., 1961, 19, 61.CrossRefGoogle Scholar
  33. 33.
    R. E. Newnham, M. J. Redman, and R. P. Santoro. J. Amer. Ceram. Soc., 1963, 46, 253.CrossRefGoogle Scholar
  34. 34.
    W. F. Bradley and D. L. Graf, R. S. Roth. Acta Cryst., 1966, 20, 283.CrossRefGoogle Scholar
  35. 35.
    P. E. D. Morgan., P. J. Carrol, and F. F. Lange. Mat. Res. Bull., 1977, 12, 251.CrossRefGoogle Scholar
  36. 36.
    G. Chadeyron, M. El-Ghozzi, R. Mahiou et al. J. Solid State Chem., 1997, 128, 261.CrossRefGoogle Scholar
  37. 37.
    M. Ren, J. H. Lin, Y. Dong et al. Chem. Mater., 1999, 11, 1576.CrossRefGoogle Scholar
  38. 38.
    G. Chadeyron, R. Mahiou, M. El-Ghozzi et al. J. Lumin., 1997, 564, 72.Google Scholar
  39. 39.
    M. Th. Cohen-Adad, O. Aloui-Lebbou, C. Goutandier et al. J. Solid State Chem., 2000, 154, 204.CrossRefGoogle Scholar
  40. 40.
    J. Lin, D. Sheptyakov, Y. Wang, and P. Allenspach. Chem. Mater., 2004, 16, 2418.CrossRefGoogle Scholar
  41. 41.
    J. H. Denning and S. D. Ross. Spectrochim. Acta, 1972, A28, 1775.CrossRefGoogle Scholar
  42. 42.
    H. M. Kriz and P. J. Bray. J. Chem. Phys., 1969, 51, 3624.CrossRefGoogle Scholar
  43. 43.
    J. Weidelt, H. U. Bambauer. Naturwissenschaften, 1968, 55, 342.CrossRefGoogle Scholar
  44. 44.
    H. J. Meyer. Naturwissenschaften, 1969, 56, 458.CrossRefGoogle Scholar
  45. 45.
    E. Antic-Fidancev, J. Aride, J.-P. Chaminade, M. Lemaitre-Blaise, and P. Porcher. J. Solid State Chem., 1992, 97, 74.CrossRefGoogle Scholar
  46. 46.
    R. Boehlhoff, H. U. Bambauer, and W. Hoffmann. Z. Krist., 1971, 133, 386.CrossRefGoogle Scholar
  47. 47.
    H. J. Meyer and A. Skokan. Naturwissenschaften, 1971, 58, 566.CrossRefGoogle Scholar
  48. 48.
    H. J. Meyer. Naturwissenschaften, 1972, 59, 215.CrossRefGoogle Scholar
  49. 49.
    K. K. Palkina, V. G. Kuznetsov, L. A. Bytman, and B. F. Dzhyrinskii. Coord. Khim., 1976, 2, 286 [in Russian].Google Scholar
  50. 50.
    G. Corbel, M. Leblanc, E. Antic-Fidancev, M. Lemaitre-Blaise, and J. C. Krupa. J. Alloys Comp., 1999, 287, 71.CrossRefGoogle Scholar
  51. 51.
    M. Yin, G. Corbel, M. Leblanc, E. Antic-Fidancev, and J. C. Krupa. J. Alloys Comp., 2000, 302, 12.CrossRefGoogle Scholar
  52. 52.
    H. Huppertz, B. Von der Eltz, D. Hoffmann, and H. Piotrowski. J. Solid State Chem., 2002, 166, 203.CrossRefGoogle Scholar
  53. 53.
    M. Levin. J. Amer. Ceram. Soc., 1967, 50, 53.CrossRefGoogle Scholar
  54. 54.
    E. A. Tkachenko, P. P. Fedorov, S. V. Kuznetsov et al. Inorg. Mater., 2006, 42, 171.CrossRefGoogle Scholar
  55. 55.
    J. Plewa and T. Justel. J. Thermal Anal. Calorim., 2007, 88, 531.CrossRefGoogle Scholar
  56. 56.
    B. M. Wanklin. J. Mater. Sci., 1973, 8, 1055.CrossRefGoogle Scholar
  57. 57.
    V. M. Fedorova, N. G. Kononova, A. E. Kokh, and V. S. Shevchenko. Neorgan. Mater., 2013, 49, 505 [in Russian].Google Scholar
  58. 58.
    A. V. Nikolaev. Physical and Chemical Investigation of Natural Borates [in Russian]. Izdatelstvo AN SSSR: Moskva-Leningrad, 1947.Google Scholar
  59. 59.
    E. M. Shvarts and A. E. Dzene. In: Borates and Borate Systems [in Russian]. Ed. G. Ya. Slaydin. Zinatne: Riga, 1978, 101.Google Scholar
  60. 60.
    R. D. Shannon. Acta Cryst. A, 1976, 32, 751.CrossRefGoogle Scholar
  61. 61.
    P. P. Fedorov and B. P. Sobolev. Zh. Fiz. Khim., 1988, 62, 896 [in Russian].Google Scholar
  62. 62.
    J. Holsa. Inorg. Chem. Acta, 1987, 139, 257.CrossRefGoogle Scholar
  63. 63.
    D. Boyer, F. Leroux, G. Bertrand, and R. Mahiou. J. Non-Cryst. Sol., 2002, 306, 110.CrossRefGoogle Scholar
  64. 64.
    Y. T. Wu, D. Z. Ding, S. K. Pan, F. Yang, and G. H. Ren. Phase Transitions, 2011, 84, 315.CrossRefGoogle Scholar
  65. 65.
    Y. Wu, D. Ding, F. Yang, S. Pan, and G. Ren. Mater. Res. Bull., 2012, 47, 106.CrossRefGoogle Scholar
  66. 66.
    D. Yoshimura, S. Tatsuya, and H. Yukio. J. Solid State Chem., 2013, 206, 151.CrossRefGoogle Scholar
  67. 67.
    P. P. Fedorov. Dokl. Phys., 2016, 61, 427.CrossRefGoogle Scholar
  68. 68.
    E. A. Tkachenko, P. P. Fedorov, S. V. Kuznetsov et al. Russ. J. Inorg. Chem., 2005, 50, 681.Google Scholar
  69. 69.
    N. G. Kononova, A. E. Kokh, T. B. Bekker et al. Inorg. Mater., 2004, 40, 1208.CrossRefGoogle Scholar
  70. 70.
    J. Weidelt. Z. Anorg. Allg. Chem., 1970, 374, 26.CrossRefGoogle Scholar
  71. 71.
    H. Huppertz. Z. Naturforsch. B, 2001, 56, 697.CrossRefGoogle Scholar
  72. 72.
    S. Lemanceau, G. Bertrand-Chadeyron, R. Mahiou, M. El-Ghozzi, J. C. Cousseins, P. Conflant, and R. N. Vannier. J. Solid State Chem., 1999, 148, 229.CrossRefGoogle Scholar
  73. 73.
    G. Bertrand-Chadeyron, M. El-Ghozzi, D. Boyer, R. Mahiou, J. C. Cousseins. J. Alloys Compd., 2001, 317–318, 183.CrossRefGoogle Scholar
  74. 74.
    E. A. Tkachenko, R. Mahiou, G. Chadeyron et al. Russ. J. Inorg. Chem, 2007, 52, 829.CrossRefGoogle Scholar
  75. 75.
    JCPDS card № 12-0762.Google Scholar
  76. 76.
    JCPDS card № 24-1272.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations