Journal of Structural Chemistry

, Volume 59, Issue 8, pp 2001–2010 | Cite as

High-Temperature Studies of the Structure of Complex Oxides Based on Bi26Mo10O69–d

  • Z. A. MikhaylovskayaEmail author
  • S. A. Petrova
  • E. S. Buyanova
  • A. Abrahams


Complex oxides with the general formula Bi26–2xMe2x Mo10O69–d, Bi26Mo10–2yMe2y′′ O69–d are synthesized by the standard ceramic technology, certified and analyzed by high-temperature X-ray and neutron diffraction techniques. Specific features of the structures of triclinic and monoclinic modifications of complex oxides are determined. It helps interpret a change in the electroconductive properties of the samples as a result of a polymorphic transition: in the monoclinic modification [MoO4–O–MoO4] clusters are detected together with a doubled amount of [(MoO4)–Bi(MoO4)–]n chains oriented along the b axis, which may affect the character of oxygen ion transfer. For Fe-substituted samples selective iron substitution for molybdenum is revealed.


bismuth molybdates bismuth oxide oxygen ion conductors high-temperature X-ray diffraction high-temperature neutron diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Wachsman and K. T. Lee. Science, 2011, 334, 935.CrossRefGoogle Scholar
  2. 2.
    P. Sprenger, W. Kleis, and J.–D. Grunwaldt. ACS Catal., 2017, 7, 5628.CrossRefGoogle Scholar
  3. 3.
    D. J. Buttrey, T. Vogt, G. P. A. Yap, and A. L. Rheingold. Mater. Res. Bull., 1997, 32, 947.CrossRefGoogle Scholar
  4. 4.
    R. N. Vannier, G. Mairesse., F. Abraham, and G. Nowogrocki. J. Solid State Chem., 1996, 122. 394.Google Scholar
  5. 5.
    C. D. Ling, W. Miller, M. R. Johnson, D. Richard, S. Rols, J. Madge, and I. R. Evans. Chem. Mater., 2012, 24, 4607.CrossRefGoogle Scholar
  6. 6.
    M. Rojo, E. Iglesias, and A. Castro. J. Solid State Chem., 2002, 166(1), 7.CrossRefGoogle Scholar
  7. 7.
    B. Muktha and T. N. Guru Row. Struct. Chem., 2007, 18, 195.CrossRefGoogle Scholar
  8. 8.
    B. Bastide, R. Enjalbert, P. Salles, and J. Galy. Solid State Ionics, 2003, 158, 351.CrossRefGoogle Scholar
  9. 9.
    R. N. Vannier, S. Danze, G. Nowogrocki, M. Huvу, and G. Mairesse. Solid State Ionics, 2000, 136/137, 51.Google Scholar
  10. 10.
    J. Galy, P. Salles, P. Rozier, and A. Castro. Solid State Ionics, 2006, 177, 2897.CrossRefGoogle Scholar
  11. 11.
    Z. A. Mikhaylovskaya, E. S. Buyanova, M. V. Morozova, S. A. Petrova, and I. V. Nikolaenko. Ionics, 2017, 23, 1107.CrossRefGoogle Scholar
  12. 12.
    V. Thakral, N. Bhardwaj, and S. Uma. Inorg. Chem., 2012, 51(3), 1462.CrossRefGoogle Scholar
  13. 13.
    R. D. Shannon. Acta Crystallogr. A, 1976, 32, 751.CrossRefGoogle Scholar
  14. 14.
    R. S. Bubnova, V. A Firsova, S. N. Volkov, and S. K. Filatov. Glass Phys. Chem., 2018, 44, 33.CrossRefGoogle Scholar
  15. 15.
    S. K. Filatov. High–Temperature Crystal Chemistry [in Russian]. USSR, Leningrad: Nedra, 1990.Google Scholar
  16. 16.
    W. C. Hamilton. Acta Crystallogr., 1965, 18, 502.CrossRefGoogle Scholar
  17. 17.
    L. Holmes, L. Peng, I. Heinmaa, L. A. O′Dell, M. E. Smith, R. N. Vannier, and C. P. Grey. Chem. Mater., 2008, 20, 3638.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Z. A. Mikhaylovskaya
    • 1
    Email author
  • S. A. Petrova
    • 2
  • E. S. Buyanova
    • 1
  • A. Abrahams
    • 3
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.Institute of Metallurgy, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  3. 3.Queen Mary University of LondonLondonUK

Personalised recommendations