Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1989–1994 | Cite as

High-Temperature Studies of the Thermal Expansion of FeNb2O6

  • R. I. Gulyaeva
  • S. A. PetrovaEmail author
  • V. M. Chumarev


High-temperature X-ray diffraction is used to study structural changes and thermal expansion of the synthesized iron niobate sample FeNb2O6 of the orthorhombic modification. It is demonstrated that no phase transformations are observed in the temperature range 30–1230 °C; there are only anisotropic changes in unit cell parameters. The temperature dependences of the unit cell parameters are approximated by third order polynomials. Tensor coefficients of the thermal expansion are calculated based on the obtained data. The Schneider-Eberhard formalism is used for the quantitative estimation of thermal expansion anisotropy.


iron niobate single crystal X-ray diffraction analysis thermal expansion anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Heid, H. Weitzel, F. Bourdarot, R. Calemczuk, T. Vogt, and H. Fuess. J. Phys. Condens. Matter., 1996, 8, 10609–10625.CrossRefGoogle Scholar
  2. 2.
    R. C. Pullar. J. Am. Ceram. Soc., 2009, 92, 563–577.CrossRefGoogle Scholar
  3. 3.
    C. Tealdi, M. C. Mozzati, L. Malavasi, T. Ciabattoni, R. Amantea, and C. B. Azzoni. Phys. Chem. Chem. Phys., 2004, 6, 4056–4061.CrossRefGoogle Scholar
  4. 4.
    P. Bordet, A. McHale, A. Santoro, and R. S. Roth. J. Solid State Chem., 1986, 64, 30–46.CrossRefGoogle Scholar
  5. 5.
    A. Aruga By, E. Tokizaki, I. Nakai, and Y. Sugitani. Acta Crystallogr., 1985, C41, 663–665.Google Scholar
  6. 6.
    H. Schrőke and N. F. Jahrb. Mineral. Abh., 1966, 106, 1–8.Google Scholar
  7. 7.
    A. Burdese and M. L. Borlera. Metall. Ital., 1965, 57, 150–155.Google Scholar
  8. 8.
    A. N. Mansurova, R. I. Gulyaeva, V. M. Chumarev, and S. A. Petrova. J. Alloys Compd., 2017, 695, 2483–2487.CrossRefGoogle Scholar
  9. 9.
    E. Tokizaki, Y. Sugitani, and K. Nagashima. Mat. Res. Bull., 1986, 21, 231–236.CrossRefGoogle Scholar
  10. 10.
    S. C. Tarantino, M. Zema, M. Pistorino, and M. C. Domeneghetti. Phys. Chem. Miner., 2003, 30, 590–598.CrossRefGoogle Scholar
  11. 11.
    DIFFRACPlus: EvaBruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D–76187, Karlsruhe, Germany, 2008.Google Scholar
  12. 12.
    Powder Diffraction File PDF4 + ICDD Release, 2016.Google Scholar
  13. 13.
    J. Laugier and B. Bochu. LMGP–Suite of Programs for the Interpretation of X–ray Experiments. ENSP. Grenoble: Lab. Materiaux Genie Phys., 2003.Google Scholar
  14. 14.
    H. M. Rietveld. J. Appl. Crystallogr., 1969, 2, 65–71.CrossRefGoogle Scholar
  15. 15.
    R. G. Zakharov, S. A. Petrova, A. E. Udilov, A. N. Petrov, A. I. Vylkov, and V. L. Lisin. Patent No. 72329, 2008, IB No. 10.Google Scholar
  16. 16.
    Manual on the X–ray diffraction study of minerals [in Russian], edited by V. A. Frank–Kamenetsky. Leningrad: Nedra, 1975.Google Scholar
  17. 17.
    R. S. Bubnova, V. A. Firsova, S. N. Volkov, and S. K. Filatov. Glass Phys. Chem., 2018, 44, 33–40.CrossRefGoogle Scholar
  18. 18.
    H. Schneider and E. Eberhard. J. Am. Ceram. Soc., 1990, 73, 2073–2076.CrossRefGoogle Scholar
  19. 19.
    M. E. Arroyo y de Dompablo, Y.–L. Lee, and D. Morgan. Chem. Mater., 2010, 22, 906–913.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. I. Gulyaeva
    • 1
  • S. A. Petrova
    • 1
    Email author
  • V. M. Chumarev
    • 1
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations