Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1974–1979 | Cite as

Parallel Computations in the Development of Thermostable Lipase Mutants

  • M. S. Kondratyev
  • A. V. Kabanov
  • A. A. Samchenko
  • V. M. Komarov
  • N. N. Khechinashvili
Article
  • 5 Downloads

Abstract

The advanced high performance computing methods are used to study the stability and conformational dynamics of the bacterial enzyme lipase LipA, its mutants, and the close homologous enzyme CLE whose substrate is polylactic acid-based plastics. From the analysis of the GPU molecular dynamics of native lipases and their mutants the amino acid residues whose point substitutions can markedly improve the thermostability of the enzymes under study without deteriorating their activity are determined.

Keywords

lipase LipA CLE thermostability molecular dynamics bioengineering point mutations enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Margesin and F. Schinner. Appl. Microbiol. Biotechnol., 2001, 56(5/6), 650.Google Scholar
  2. 2.
    L. O. Karpachevskii. Ecological Soil Science [in Russian]. Izd. MGU, Moscow, 1993.Google Scholar
  3. 3.
    B. G. Murzakov and M. B. Biteeva. Environment Protection, Waste Management, Wastewater and Emission Treatment, Occupational Sanitation and Hygiene in Medical Industry. Survey Information [in Russian]. Issue 3. Moscow, 1992.Google Scholar
  4. 4.
    K. R. Jegannathana and P. H. Nielsenb. J. Cleaner Prod., 2013, 42, 228.CrossRefGoogle Scholar
  5. 5.
    H. Zhao, K. Chockalingam, and Z. Chen. Curr. Opin. Biotechnol., 2002, 13(2), 104.CrossRefGoogle Scholar
  6. 6.
    S. Li, X. Yang, S. Yang, M. Zhu, and X. Wang. Comput. Struct. Biotechnol. J., 2012, 2, e201209017.CrossRefGoogle Scholar
  7. 7.
    Donald Lee Wise. Encyclopedic handbook of biomaterials and bioengineering: Applications, vol.2. New York: Marcel Dekker, 1995.Google Scholar
  8. 8.
    S. Panke and M. G. Wubbolts. Curr. Opin. Biotechnol., 2002, 13(2), 111.CrossRefGoogle Scholar
  9. 9.
    C. Arun and P. Sivashanmugam. Bioresour. Technol., 2017, 226, 200.CrossRefGoogle Scholar
  10. 10.
    D. J. Kushner (Ed.). Microbial Life in Extreme Environments. University of Ottawa. Academic Press, 1978.Google Scholar
  11. 11.
    M. Z. Kamal, S. Ahmad, T. R. Molugu, A. Vijayalakshmi, M. V. Deshmukh, R. Sankaranarayanan, and N. M. Rao. J. Mol. Biol., 2011, 413(3), 726.CrossRefGoogle Scholar
  12. 12.
    M. Lehmann and M. Wyss. Curr. Opin. Biotechnol., 2001, 12, 371.CrossRefGoogle Scholar
  13. 13.
    A. E. Serov and V. I. Tishkov. Moscow Univ. Chem. Bull., 2002, 43(6), 345.Google Scholar
  14. 14.
    M. G. Pikkemaat, A. B. Linssen, H. J. Berendsen, D. B. Janssen. Protein Eng., 2002, 15(3), 185.CrossRefGoogle Scholar
  15. 15.
    A. V. Puchkaev, L. S. Koo, and P. R. O. de Montellano. Arch. Biochem. Biophys., 2003, 409(1), 52.CrossRefGoogle Scholar
  16. 16.
    A. E. Serov, E. R. Odintseva, I. V. Yporov, and V. I. Tishkov. Biochemistry, 2005, 70(7), 974.Google Scholar
  17. 17.
    A. A. Polyanskii, Yu. A. Kosinskii, and R. G. Efremov. Russ. J. Bioorg. Chem., 2004, 30(5), 470.Google Scholar
  18. 18.
    N. N. Khechinashvili, M. V. Fedorov, A. V. Kabanov, S. Monti, C. Ghio, and K. Soda. J. Biomol. Struct. Dyn., 2006, 24(3), P. 255.Google Scholar
  19. 19.
    N. N. Khechinashvili, S. A. Volchkov, A. V. Kabanov, and G. Barone. Biochim. Biophys. Acta, 2008, 1784(11), 1830.CrossRefGoogle Scholar
  20. 20.
    M. S. Kondratyev, A. V. Kabanov, V. M. Komarov, N. N. Khechinashvili, and A. A. Samchenko. Biophysics, 2011, 56(6), 1045.Google Scholar
  21. 21.
    E. S. Fomin and N. A. Alemasov. Russ. J. Genet.: Appl. Res., 2012, 16(2), 415.Google Scholar
  22. 22.
    Y. T. Meharenna and T. L. Poulos. Biochemistry, 2010, 49(31), 6680.CrossRefGoogle Scholar
  23. 23.
    T. B. Mamonova, A. V. Glyakina, M. G. Kumikova, and O. V. Galzitskaya. J. Bioinform. Comput. Biol., 2010, 8(3), 377.CrossRefGoogle Scholar
  24. 24.
    A. V. Glyakina and O. V. Galzitskaya. J. Bioinform. Comput. Biol., 2010, 8(3), 395.CrossRefGoogle Scholar
  25. 25.
    M. S. Kondratyev and A. V. Teplukhin. Supercomputer Technologies in Science, Education, and Industry [in Russian]. Izd. MGU, Moscow, 2010.Google Scholar
  26. 26.
    N. N. Khechinashvili, A. V. Kabanov, M. S. Kondratyev, and R. V. Polozov. J. Biomol. Struct. Dyn., 2014, 32(9), 1396.CrossRefGoogle Scholar
  27. 27.
    G. van Pouderoyen, T. Eggert, K. E. Jaeger, and B. W. Dijkstra. J. Mol. Biol., 2011, 309, 215.CrossRefGoogle Scholar
  28. 28.
    Y. Kodama, K. Masaki, H. Kondo, M. Suzuki, S. Tsuda, T. Nagura, N. Shimba, E. Suzuki, and H. Iefuji. Proteins, 2009, 77, 710.CrossRefGoogle Scholar
  29. 29.
    K. Masaki, N. R. Kamini, H. Ikeda, and H. Iefuji. Appl. Environ. Microbiol., 2005, 71(11), 7548.CrossRefGoogle Scholar
  30. 30.
    E. Rajakumara, P. Acharya, S. Ahmad, R. Sankaranaryanan, and N. M. Rao. Biochim. Biophys. Acta, 2008, 1784, 302.CrossRefGoogle Scholar
  31. 31.
    J. E. Stone, J. Saam, D. J. Hardy, K. L. Vandivort, W. W. Hwu, and K. Schulten. Proceedings of the 2nd Workshop on General–Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383. New York, NY, USA, 2009.Google Scholar
  32. 32.
    J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. J. Mol. Graph. Model., 2010, 29, 116.CrossRefGoogle Scholar
  33. 33.
    http://www.nvidia.ru/object/cuda–parallel–computing–ru.html.Google Scholar
  34. 34.
    M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand, A. L. Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande. J. Comput. Chem., 2009, 30(6), 864.CrossRefGoogle Scholar
  35. 35.
    W. Jiang, J. Phillips, L. Huang, M. Fajer, Y. Meng, J. Gumbart, Y. Luo, K. Schulten, and B. Roux. Comput. Phys. Commun., 2014, 185, 908.CrossRefGoogle Scholar
  36. 36.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. J. Comput. Chem., 2005, 26, 1781.CrossRefGoogle Scholar
  37. 37.
    M. S. Kondratyev, A. V. Kabanov, M. G. Kholyavka, M. G. Sharapov, and N. N. Khechinashvili. Biophysics, 2016, 61(1), 18.CrossRefGoogle Scholar
  38. 38.
    W. Humphrey, A. Dalke, and K. Schulten. J. Molec. Graphics, 1996, 14, 33–38.CrossRefGoogle Scholar
  39. 39.
    N. Guex and M. C. Peitsch. Electrophoresis, 1997, 18, 2714.CrossRefGoogle Scholar
  40. 40.
    V. A. Annenkov, E. V. Pershina, D. A. Cherenkov, and O. S. Korneeva. Aktualnaja Biotekhnologija, 2012, 3(2), 6.Google Scholar
  41. 41.
    V. A. Annenkov, E. V. Pershina, D. A. Cherenkov, and O. S. Korneeva. Vestn. Voronezh. Gos. Un–ta Inzh. Tekhnologij, 2013, 2(56), 191.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. S. Kondratyev
    • 1
  • A. V. Kabanov
    • 1
  • A. A. Samchenko
    • 1
  • V. M. Komarov
    • 1
  • N. N. Khechinashvili
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations