Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1866–1879 | Cite as

Dft Calculations and Spectroscopic Studies of some Ni Dimethylglyoximebased Complexes Isolated by the Hydrothermal Process

  • N. Kichou
  • N. Guechtouli
  • S. Zaater
  • H. Meghezzi
  • Z. Hank
Article
  • 6 Downloads

Abstract

In this paper, we report the synthesis of dimethylglyoximato-nickel complexes by the hydrothermal method. This process is rarely used for the preparation of coordination compounds. In order to identify the oxidation state of nickel within the complexes, the complexation study was conducted in two ways (with or without an oxidizing chemical agent, namely potassium persulfate). New mononuclear dimethylglyoxime–nickel complexes are isolated and thoroughly characterized by elemental analyses and commonly used spectral techniques. The EPR investigation confirms the oxidation state of nickel in all complexes. Infrared spectroscopy (IR) and nuclear magnetic resonances (1H and 13C) indicate the formation and presence of new reduced forms of oximes within the complexes, namely enamine. From all these investigations, the suggested formulas for the complexes are: (Ni(C4H7N2O)2OH), named bis(3-aminobut-3-en-2-one oximato)hydrox nickel(III), noted Ca, obtained without an oxidizing chemical agent and Ni(C4H6N2O)2(OH)2), named bis(3-aminobut-3-en-2-one oximato) dihydroxy nickel(IV), noted Cb, obtained with an oxidizing chemical agent. The experimental IR, 1H and 13C NMR results and the electronic spectra (UV) are compared to those obtained theoretically by the DFT method, with the B3LYP function and the LANL2DZ basis set. The energy, structural, and electronic parameters are determined for the ligand and each complex studied. Binding energies are also theoretically evaluated for each complex.

Keywords

dimethylglyoxime hydrothermal process metal complexes DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Hank, S. Boutamine, M. E. Brik, M. Meklati, and O. Vittori. Synth. React. Inorg., 1999, 29(4), 577–597.Google Scholar
  2. 2.
    Z. Hank, S. Boutamine, M. Meklati, and O. Vittori. Synth. React. Inorg. Met.–Org. Chem., 1997, 27(6), 1315–1328.Google Scholar
  3. 3.
    Z. Hank, K. Labraoui, S. Boutamine, M. Meklati, and O. Vittori. Rev. Inorg. Chem., 2003, 23(1), 75–96.Google Scholar
  4. 4.
    Z. Hank, N. Kichou, S. Boutamine, M. Meklati, and O. Vittori. Rev. Inorg. Chem., 2004, 24(1), 39–59.Google Scholar
  5. 5.
    M. W. W. Adams. Biochim. Biophys. Acta, 1990, 1020(2), 135–145.Google Scholar
  6. 6.
    R. Cammack, V. M. Fernandez, and K. Schneider. Bioinorganic Chemistry of Nickel / Ed. J. R. Lancaster Jr. New York: VCH, 1988, 167–190.Google Scholar
  7. 7.
    J. J. G. Moura, M. Teixeira, L. Moura, and I. LeGal. Bioinorganic Chemistry of Nickel / Ed. J. R. Lancaster Jr. New York: VCH, 1988, 191–226.Google Scholar
  8. 8.
    E. J. Subak Jr., V. M. Loyola, and D. W. Margeryum. Inorg. Chem., 1985, 24(25), 4350–4356.Google Scholar
  9. 9.
    C. Walsh and W. H. Orme. J. Biochem., 1987, 26(16) 4901–4901.Google Scholar
  10. 10.
    A. Bakae and J. H. Espenso. J. Am. Chem. Soc., 1986, 108, 5335.Google Scholar
  11. 11.
    J. R. Lancaster Jr. FEBS Lett., 1980, 115, 285–288.Google Scholar
  12. 12.
    E. G. Graf and R. K. Tauer Jr. FEBS Lett., 1981, 136, 165.Google Scholar
  13. 13.
    M. S. Ram, A. Bakae, and J. H. Espenson. Inorg. Chem., 1986, 25, 3267.Google Scholar
  14. 14.
    V. S. Shivankar and N. V. Thakkar. J. Sci. Ind. Res., 2005, 64(7), 496–503.Google Scholar
  15. 15.
    D. H. Macartney and N. Sutin. Inorg. Chem., 1983, 22, 3530–3541.Google Scholar
  16. 16.
    A. Meshulam, H. Cohen, and D. Meyerstein. Inorg. Chim. Acta, 1998, 273, 184.Google Scholar
  17. 17.
    A. Dobosz, I. O. Fritsky, A. Karaczyn, H. Kolowski, T. Yu–Sliva, and J. Swiatek–Kozlowska. J. Chem. Dalton Trans., 1998, 11, 1089/1090.Google Scholar
  18. 18.
    D. H. Macartney and A. McAuley. Can. J. Chem., 1983, 61, 103–108.Google Scholar
  19. 19.
    J. Lati and D. Mereystein. Inorg. Chem., 1972, 11, 2273/2274.Google Scholar
  20. 20.
    P. J. Chmielevski and L. Latos–Grazynski. Inorg. Chem., 1994, 33(9), 1992–1999.Google Scholar
  21. 21.
    W. Levason and C. A. McAuliffe. Coord. Chem. Rev., 1974, 12, 151–167.Google Scholar
  22. 22.
    L. N. Mulay. Magnetic Susceptibility. New York: John Wiley, 1963, 1818.Google Scholar
  23. 23.
    A. D. Becke. J. Chem. Phys., 1993, 98(7), 5648–5652.Google Scholar
  24. 24.
    P. J. Hay and W. R. Wadt. J. Chem. Phys., 1985, 82, 270–283.Google Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hrat–chian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Za–krzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03, Revision A.1. Pittsburgh PA: Gaussian, Inc., 2003.Google Scholar
  26. 26.
    A. Fresch, A. B. Nielson, and A. J. Holder. GAUSSVIEW User Manual. Pittsburgh: Gaussian Inc., 2003.Google Scholar
  27. 27.
    K. Wolinski, J. F. Hinton, and P. Pulay. J. Am. Chem. Soc., 1990, 112(23), 8251–8260.Google Scholar
  28. 28.
    R. K. Panda, S. Arya, and G. Neogi. J. Chem. Soc. Dalton Trans., 1983, 12, 1225.Google Scholar
  29. 29.
    W. J. Geary. Coord. Chem. Rev., 1971, 7(1), 81–122.Google Scholar
  30. 30.
    L. Godycki and E. R. E. Rundle. Acta Crystallogr., 1953, 6(6), 487–495.Google Scholar
  31. 31.
    K. Henderson, E. Bouwman, L. Spek, and J. Reedjik. Inorg. Chem., 1997, 36(21), 4616/4617.Google Scholar
  32. 32.
    Y. Tian, C. Duan, Z. Lu, X. You, and T. C. W. Mak. Polyhedron, 1997, 16(16), 2863–2869.Google Scholar
  33. 33.
    R. M. Silverstein, G. C. Bassler, and T. C. Morill. Spectrometric Identification of Organic Compounds. 5th Ed. New York: John Wiley and Sons Inc., 1991.Google Scholar
  34. 34.
    A. El–Bindary and A. Z. El–Sounbati. Polish. J. Chem., 2000, 74, 615.Google Scholar
  35. 35.
    P. B. Ayscough. Electron Spin Resonance in Chemistry. London: Methuen, 1967.Google Scholar
  36. 36.
    D. Kivelson and R. Neiman, J. Chem. Phys., 1961, 35(1), 149–155.Google Scholar
  37. 37.
    J. Lewis and R. G. Wilkins. Modern Coordination Chemistry. Principals and Methods. New York: Interscience Publishers Inc., 1960, 403–406.Google Scholar
  38. 38.
    S. Mukhopalyay and D. Ray. J. Chem. Soc. Dalton Trans., 1995, 2, 265–268.Google Scholar
  39. 39.
    L. N. Nogheu, J. N. Ghogomu, D. B. Mama, N. K. Nkungli, E. Younang, and S. R. Gadre. Comput. Chem., 2016, 4, 119–136.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. Kichou
    • 1
    • 2
  • N. Guechtouli
    • 1
    • 3
  • S. Zaater
    • 4
    • 5
  • H. Meghezzi
    • 3
  • Z. Hank
    • 2
  1. 1.University of Mouloud Mammeri of Tizi-OuzouTizi-OuzouAlgeria
  2. 2.Laboratory of Electrochemistry–Corrosion, Metallurgy and Mineral Chemistry, Faculty of ChemistryHouari Boumediene Sciences and Technology UniversityAlgiersAlgeria
  3. 3.Laboratory of Thermodynamics and Molecular Modeling, Faculty of ChemistryHouari Boumediene Sciences and Technology UniversityAlgiersAlgeria
  4. 4.Laboratoire de Physico-Chimie Théorique et de Chimie Informatique, Faculty of ChemistryHouari Boumediene Sciences and Technology UniversityAlgiersAlgeria
  5. 5.Ecole Supérieure en Sciences Appliquées (ESSA) AlgerAlgiersAlgeria

Personalised recommendations