Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1858–1865 | Cite as

Structure and Chemical Composition of the Ordinary Chondrite Jiddat Al Harasis 055

  • L. V. GudaEmail author
  • A. N. Kravtsova
  • S. P. Kubrin
  • M. I. Mazuritsky
  • M. V. Kirichkov
  • Yu. V. Rusalyov
  • V. V. Shapovalov
  • A. V. Soldatov
Article
  • 6 Downloads

Abstract

A comprehensive study of the Jiddat Al Harasis 055 (L4-5 type) ordinary chondrite is conducted using 2D X-ray fluorescence spectroscopy, Mössbauer spectroscopy, X-ray absorption near edge structure (XANES) spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The content of Fe, Ni, Si, Mg, S, Ca, Al, Mn, Ti, and Cr is determined; several components and areas with increased content of S, Ti, Cr, and Ni are detected along with several Ca–Al inclusions. According to XANES data, the Jiddat Al Harasis 055 sample contains iron with the average oxidation state 2.4+. This result is consistent with the data of Mössbauer spectroscopy used to identify iron phases which testifis that 46% and 54% of iron ions appear in Fe2+ and Fe3+ states, respectively. By comparing the pre-edge energy position and the area under the preedge peak of XANES spectra with literature data reported for geological materials, the average coordination number in the first coordination sphere of iron is found to be 5.3. According to the data of Xray diffraction and Mössbauer spectroscopy, the iron-containing meteorite phases consist mainly of olivine, pyroxene, hematite, and goethite. The observed magnetic properties of the sample can be attributed to small inclusions of ferromagnetic phases such as nickel nanoparticles, which cannot be reliably identified using laboratory spectral methods.

Keywords

XANES spectroscopy Mössbauer spectroscopy elemental mapping oxidation state X-ray diffraction ordinary chondrites Jiddat Al Harasis 055 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wirick, G. J. Flynn, S. R. Sutton, and M. E. Zolensky. 45th Lunar Planet. Sci., 2014, (1940).Google Scholar
  2. 2.
    S. B. Simon, S. R. Sutton, and L. Grossman. Geochim. Cosmochim. Acta, 2016, 189, 377.CrossRefGoogle Scholar
  3. 3.
    S. S. Russell, L. Folco, M. M. Grady, et al. Meteorit. Planet. Sci., 2004, 39, A215.CrossRefGoogle Scholar
  4. 4.
    M. Wilke, F. Farges, P.–E. Petit, et al. Am. Mineral., 2001, 86, 714.CrossRefGoogle Scholar
  5. 5.
    A. Garenne, P. Beck, G. Montes–Hernandez, et al. 45th Lunar Planet. Sci., 2014, (1941).Google Scholar
  6. 6.
    P. Beck, V. De Andrade, F.–R. Orthous–Daunay, et al. Geochim. Cosmochim. Acta, 2012, 99, 305.CrossRefGoogle Scholar
  7. 7.
    M. L. Cerón Loayza and J. A. Bravo Cabrejos. Hyperfine Interact., 2011, 203, 17.CrossRefGoogle Scholar
  8. 8.
    M. E. Matsnev and V. S. Rusakov. AIP Conf. Proc., 2012, 178, 1489.Google Scholar
  9. 9.
    F. Menil and J. Systematic. Phys. Chem. Solids., 1985, 46, 763.CrossRefGoogle Scholar
  10. 10.
    J. G. Stevens, A. M. Khasanov, J. W. Miller, et al. Li Mössbauer Mineral Handbook. USA, The University of North Carolina at Asheville: Mössbauer Effect Data Center, 2002.Google Scholar
  11. 11.
    R. E. Vandenberghe and E. De Grave. Mössbauer Spectroscopy. Tutorial Book, 2013.Google Scholar
  12. 12.
    Y. A. Abdu and T. Ericsson. Meteorit. Planet. Sci., 1997, 32, 373.CrossRefGoogle Scholar
  13. 13.
    E. Dos Santos, J. Gattacceca, P. Rochette, et al. Phys. Earth Planet. Inter., 2015, 242, 50.CrossRefGoogle Scholar
  14. 14.
    E. V. Zhiganova, V. I. Grokhovsky, and M. I. Oshtrakh. Phys. Status Solid., 2007, 204, 1185.CrossRefGoogle Scholar
  15. 15.
    S. S. Hafner, J. Stanek, and M. Stanek. J. Phys. Chem. Solids, 1990, 51, 203.CrossRefGoogle Scholar
  16. 16.
    W. Lottermoser, K. Forcher, G. Amthauer, et al. Phys. Chem. Miner., 1995, 22, 259.CrossRefGoogle Scholar
  17. 17.
    J. C. P. De Oliveira, M. I. da Costa, W. H. Schreiner, et al. J. Magn. Magn. Mater., 1991, 98, 239.CrossRefGoogle Scholar
  18. 18.
    V. U. S. Rao, F. E. Huggins, and G. P. Huffman. J. Appl. Phys., 1979, 50, 2408.CrossRefGoogle Scholar
  19. 19.
    B. S. Paliwali, R. P. Tripathiz, H. C. Verma, et al. Meteorit. Planet. Sci., 2000, 35, 639442.Google Scholar
  20. 20.
    A. M. Gismelseed, Y. A. Abdu, M. H. Shaddad, et al. Meteorit. Planet. Sci., 2014, 49, 1485.CrossRefGoogle Scholar
  21. 21.
    E. Dos Santos, R. B. Scorzelli, and M. E. Varela. Hyperfine Interact., 2014, 224, 251.CrossRefGoogle Scholar
  22. 22.
    P. Munayco, J. Munayco, M. Valenzuela, et al. Hyperfine Interact., 2014, 224, 257.CrossRefGoogle Scholar
  23. 23.
    A. M. Gismelseed, S. B. Abdallah, A. D. Al–Rawas, et al. Hyperfine Interact., 2016, 237, 14.CrossRefGoogle Scholar
  24. 24.
    S. Bocquet, R. J. Pollard, and J. D. Cashion. Phys. Rev. B, 1992, 46, 11657.CrossRefGoogle Scholar
  25. 25.
    U. Schwertmann, P. Cambier, and E. Murad. Clays Clay Miner., 1985, 33, 369.CrossRefGoogle Scholar
  26. 26.
    S. Bedanta and W. Kleemann. J. Phys. D: Appl. Phys., 2009, 42, 013001.CrossRefGoogle Scholar
  27. 27.
    S. Mørup and H. Topsøe. Appl. Phys., 1976, 11, 63.CrossRefGoogle Scholar
  28. 28.
    M. A. Chuev. JETP Lett., 2013, 98, 465.CrossRefGoogle Scholar
  29. 29.
    W. Kündig and H. Bömmel. Phys. Rev., 1966, 142, 327.CrossRefGoogle Scholar
  30. 30.
    G. Giuli, G. Pratesi, C. Cipriani, et al. Geochim. Cosmochim. Acta, 2002, 66, 4347.CrossRefGoogle Scholar
  31. 31.
    Z. Nemati, J. Alonso, L. M. Martinez, et al. J. Phys. Chem. C, 2016, 120, 8370.CrossRefGoogle Scholar
  32. 32.
    J. Carvell, E. Ayieta, A. Gavrin, et al. J. Appl. Phys., 2010, 107, 103913.CrossRefGoogle Scholar
  33. 33.
    Xuemin He, Wei Zhong, and Chak–Tong Au. Nanoscale Res. Lett., 2013, 8, 446.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Guda
    • 1
    Email author
  • A. N. Kravtsova
    • 1
  • S. P. Kubrin
    • 2
  • M. I. Mazuritsky
    • 1
  • M. V. Kirichkov
    • 1
  • Yu. V. Rusalyov
    • 1
  • V. V. Shapovalov
    • 1
  • A. V. Soldatov
    • 1
  1. 1.The Smart Materials Research InstituteSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations