Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1833–1840 | Cite as

An Xps Study of Solid Solutions Mo1–XNbxS2 (0 < x < 0.15)

  • A. Yu. Ledneva
  • S. A. Dalmatova
  • A. D. Fedorenko
  • I. P. Asanov
  • A. N. Enyashin
  • L. N. Mazalov
  • V. E. FedorovEmail author
Article

Abstract

Solid solutions Mo1–xNbxS2 (x = 0, 0.05, 0.10, and 0.15) crystallizing in the hexagonal structure 2H-MoS2 are synthesized. The samples are characterized by powder X-ray diffraction (XRD) and Raman spectroscopies, X-ray photoelectron spectroscopy (XPS), and quantum chemical calculations (DFT). The changes occurring in the electronic properties of high-resistivity semiconductor MoS2 and indicating metallic behavior of obtained solid solutions Mo1–xNbxS2 are not accompanied by substantial changes in the atomic photoelectron spectra.

Keywords

molybdenum niobium disulfides DFT X-ray photoelectron spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wilson and A. D. Yoffe. Adv. Phys., 1969, 18(73), 193.CrossRefGoogle Scholar
  2. 2.
    E. Zhang, Y. B. Jin, X. Yuan, W. Y. Wang, C. Zhang, L. Tang, S. S. Liu, P. Zhou, W. D. Hu, and F. X. Xiu. Adv. Funct. Mater., 2015, 25(26), 4076.CrossRefGoogle Scholar
  3. 3.
    M. W. Lin, I. I. Kravchenko, J. Fowlkes, X. F. Li, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, and K. Xiao. Nanotechnology, 2016, 27, 16.Google Scholar
  4. 4.
    L. M. Ruan, H. Z. Zhao, D. D. Li, S. F. Jin, S. M. Li, L. Gu, and J. K. Liang. J. Electron. Mater., 2016, 45(6), 2926.CrossRefGoogle Scholar
  5. 5.
    G. Zhang and Y.–W. Zhang. J. Mater. Chem. C, 2017, 5(31), 7684.CrossRefGoogle Scholar
  6. 6.
    S. Dou, J. H. Wu, L. Tao, A. L. Shen, J. Huo, and S. Y. Wang. Nanotechnology, 2016, 27, 4.Google Scholar
  7. 7.
    A. P. Murthy, J. Theerthagiri, J. Madhavan, and K. Murugan. Phys. Chem. Chem. Phys., 2017, 19(3), 1988.CrossRefGoogle Scholar
  8. 8.
    T. Stephenson, Z. Li, B. Olsen, and D. Mitlin. Energy Environ. Sci., 2014, 7(1), 209.CrossRefGoogle Scholar
  9. 9.
    V. A. Kuznetsov, A. S. Berdinsky, A. Y. Ledneva, S. B. Artemkina, M. S. Tarasenko, and V. E. Fedorov. Sens. Actuators A, 2015, 226, 5.CrossRefGoogle Scholar
  10. 10.
    H. Luo, Y. J. Cao, J. Zhou, J. M. Feng, J. M. Cao, and H. Guo. Chem. Phys. Lett., 2016, 643, 27.CrossRefGoogle Scholar
  11. 11.
    J. Zhu, H. Zhang, Y. W. Tong, L. Zhao, Y. F. Zhang, Y. Z. Qiu, and X. N. Lin. Appl. Surf. Sci., 2017, 419, 522.CrossRefGoogle Scholar
  12. 12.
    A. A. Tedstone, D. J. Lewis, and P. O′Brien. Chem. Mater., 2016, 28(7), 1965.CrossRefGoogle Scholar
  13. 13.
    E. D. Grayfer, M. N. Kozlova, and V. E. Fedorov. Adv. Colloid. Interface, 2017, 245, 40.CrossRefGoogle Scholar
  14. 14.
    H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li, and Y. Cui. Chem. Soc. Rev., 2015, 44(9), 2664.CrossRefGoogle Scholar
  15. 15.
    A. I. Romanenko, G. E. Yakovleva, V. E. Fedorov, A. Yu. Ledneva, V. A. Kuznetsov, A. V. Sotnikov, A. R. Tsygankova, and B. M. Kuchumov. J. Struct. Chem., 2017, 58(5), 893.CrossRefGoogle Scholar
  16. 16.
    B. F. Mentzen and M. J. Sienko. Inorg. Chem., 1976, 15(9), 2198.CrossRefGoogle Scholar
  17. 17.
    G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim, and V. E. Fedorov. 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (Mipro), 2016, 5.Google Scholar
  18. 18.
    G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, V. A. Kuznetsov, A. Yu. Ledneva, S. B. Artemkina, and V. E. Fedorov. Semiconductors, 2017, 51(6), 725.CrossRefGoogle Scholar
  19. 19.
    V. E. Fedorov, N. G. Naumov, A. N. Lavrov, M. S. Tarasenko, S. B. Artemkina, A. I. Romanenko, and M. V. Medvedev. 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (Mipro), 2013, 11.Google Scholar
  20. 20.
    S. A. Dalmatova, A. D. Fedorenko, L. N. Mazalov, I. P. Asanov, A. Y. Ledneva, M. S. Tarasenko, A. N. Enyashin, and V. E. Fedorov. Nanoscale, 2018.Google Scholar
  21. 21.
    L. N. Mazalov. X–ray Spectra and Chemical Bonding [in Russian], Nauka, Novosibirsk, 1982.Google Scholar
  22. 22.
    Casa Software Ltd, CasaXPS Manual 2.3.15. CasaXPS Processing Software, 2009.Google Scholar
  23. 23.
    N. S. Mcintyre, P. A. Spevack, G. Beamson, and D. Briggs. Surf. Sci., 1990, 237(1–3), L390.Google Scholar
  24. 24.
    S. Ozkar, G. A. Ozin, and R. A. Prokopowicz. Chem. Mater., 1992, 4(6), 1380.CrossRefGoogle Scholar
  25. 25.
    J. R. Lince, T. B. Stewart, M. M. Hills, P. D. Fleischauer, J. A. Yarmoff, and A. Talebibrahimi. Surf. Sci., 1989, 223(1–2), 65.Google Scholar
  26. 26.
    L. Benoist, D. Gonbeau, G. Pfisterguillouzo, E. Schmidt, G. Meunier, and A. Levasseur. Surf. Interface Anal., 1994, 22(1–12), 206.Google Scholar
  27. 27.
    B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, and K. Siegbahn. Phys. Scr., 1970, 1(5–6), 286.Google Scholar
  28. 28.
    A. R. H. F. Ettema and C. Haas. J. Phys. Condens. Matter, 1993, 5(23), 3817.CrossRefGoogle Scholar
  29. 29.
    R. Fontaine, R. Caillat, L. Feve, and M. J. Guittet. J. Electron Spectrosc. Relat. Phenom., 1977, 10(4), 349.CrossRefGoogle Scholar
  30. 30.
    A. Daccà, G. Gemme, L. Mattera, and R. Parodi. Surf. Sci. Spectra, 1998, 5(4), 332.CrossRefGoogle Scholar
  31. 31.
    NIST X–ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20 Gaithersburg MD 20899: National Institute of Standards and Technology, 2000.Google Scholar
  32. 32.
    P. Hohenberg and W. Kohn. Phys. Rev., 1964, 136(3B), B864.Google Scholar
  33. 33.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez–Portal. J. Phys. Condens. Matter., 2002, 14(11), 2745.CrossRefGoogle Scholar
  34. 34.
    J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77(18), 3865.CrossRefGoogle Scholar
  35. 35.
    H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat. Adv. Funct. Mater., 2012, 22(7), 1385.CrossRefGoogle Scholar
  36. 36.
    K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito. Phys. Rev. B, 2013, 88(7), 075420.CrossRefGoogle Scholar
  37. 37.
    A. Kuc and T. Heine. Chem. Soc. Rev., 2015, 44(9), 2603.CrossRefGoogle Scholar
  38. 38.
    S. P. Gabuda, S. G. Kozlova, M. R. Ryzhikov, and V. E. Fedorov. J. Phys. Chem. C, 2012, 116(38), 20651.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Ledneva
    • 1
  • S. A. Dalmatova
    • 1
    • 2
  • A. D. Fedorenko
    • 1
  • I. P. Asanov
    • 1
    • 2
  • A. N. Enyashin
    • 3
  • L. N. Mazalov
    • 1
    • 2
  • V. E. Fedorov
    • 1
    • 2
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations