Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1810–1817 | Cite as

A Theoretical Investigation on the Regioselectivity of the Diels–Alder Cycloaddition of 9-(Methoxymethyl) Anthracene And Citraconic Anhydride

  • A. Bazian
  • S. A. BeyramabadiEmail author
  • A. Davoodnia
  • M. R. Bozorgmehr
  • M. Pordel
Article
  • 11 Downloads

Abstract

The mechanism and regioselectivity of the Diels–Alder cycloaddition reaction between 9- (methoxymethyl)anthracene and citraconic anhydride are explored using the valuable density functional theory (DFT) methods. The solvent effects are considered using the polarizable continuum model in the toluene solution. Due to a small electrophilicity difference of the reactants, the reaction has a low polar character. The investigated Diels–Alder reaction has a normal electron demand character. Depending on the respective position of substituents in the cycloadducts (head-to-head (ortho) or head-to-tail (meta)) the reaction can be progressed via two different pathways: ortho and meta. Due to a very high activation energy, the meta pathway is rejected. The product of the ortho pathway is demonstrated to be the final product of the reaction in the toluene solution. The obtained DFT results are in good agreement with the experimental results.

Keywords

DFT Diels–Alder cycloaddition regioselectivity anthracene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Boger. Chem. Rev. (Washington, DC, US), 1986, 86, 781.CrossRefGoogle Scholar
  2. 2.
    X. Jiang and R. Wang. Chem. Rev. (Washington, DC, US), 2013, 113, 5515.CrossRefGoogle Scholar
  3. 3.
    K.–I. Takao, R. Munakata, and K.–I. Tadano. Chem. Rev. (Washington, DC, US), 2005, 105, 4779.CrossRefGoogle Scholar
  4. 4.
    J. D. Winkler. Chem. Rev. (Washington, DC, US), 1996, 96, 167.CrossRefGoogle Scholar
  5. 5.
    L. Song, G. Zhu, Y. Liu, B. Liu, and S. Qin. J. Am. Chem. Soc., 2015, 137, 13706.CrossRefGoogle Scholar
  6. 6.
    E. V. Mironova, M. S. Dzyurkevich, O. A. Lodochnikova, D. B. Krivolapov, I. A. Litvinov, and V. V. Plemenkov. J. Struct. Chem., 2012, 53(2), 361–364.CrossRefGoogle Scholar
  7. 7.
    M. Salakhov, O. Grechkina, and B. Bagmanov. J. Struct. Chem., 2010, 51(1), 16.CrossRefGoogle Scholar
  8. 8.
    T. Barhoumi–Slimi, M. B. Dhia, M. Nsangou, M. El Gaied, and M. Khaddar. J. Struct. Chem., 2010, 51(2), 251.CrossRefGoogle Scholar
  9. 9.
    D. L. Boger and S. M. Weinreb. Hetero Diels–Alder methodology in organic synthesis. Elsevier, 2012.Google Scholar
  10. 10.
    H. Oikawa and T. Tokiwano. Nat. Prod. Rep., 2004, 21, 321.CrossRefGoogle Scholar
  11. 11.
    E. M. Stocking and R. M. Williams. Angew. Chem., Int. Ed., 2003, 42, 3078.CrossRefGoogle Scholar
  12. 12.
    P. Buonora, J.–C. Olsen, and T. Oh. Tetrahedron, 2001, 57, 6099.CrossRefGoogle Scholar
  13. 13.
    J. Barluenga, J. Joglar, F. González, and S. Fustero. Synlett, 1990, 1990, 129.CrossRefGoogle Scholar
  14. 14.
    K. L. Burgess, N. J. Lajkiewicz, A. Sanyal, W. Yan, and J. K. Snyder. Org. Lett., 2005, 7, 31.CrossRefGoogle Scholar
  15. 15.
    E. Ciganek. J. Org. Chem., 1980, 45, 1497.CrossRefGoogle Scholar
  16. 16.
    S. Fukuzumi, T. Okamoto, and K. Ohkubo. J. Phys. Chem. A, 2003, 107, 5412.CrossRefGoogle Scholar
  17. 17.
    B. Gacal, H. Durmaz, M. A. Tasdelen, G. Hizal, U. Tunca, Y. Yagci, and A. L. Demirel. Macromolecules, 2006, 39, 5330.CrossRefGoogle Scholar
  18. 18.
    N. D. Khupse and A. Kumar. J. Phys. Chem. A, 2011, 115, 10211.CrossRefGoogle Scholar
  19. 19.
    K. E. Kolb. J. Chem. Educ., 1989, 66, 955.Google Scholar
  20. 20.
    M. M. Kose, G. Yesilbag, and A. Sanyal. Org. Lett., 2008, 10, 2353.CrossRefGoogle Scholar
  21. 21.
    K. E. Wise and R. A. Wheeler. J. Phys. Chem. A, 1999, 103, 8279.CrossRefGoogle Scholar
  22. 22.
    A. Nierth, A. Y. Kobitski, G. U. Nienhaus, and A. Jäschke. J. Am. Chem. Soc., 2010, 132, 2646.CrossRefGoogle Scholar
  23. 23.
    G. H. Schenk and D. R. Wirz. Anal. Chem., 1970, 42, 1754.CrossRefGoogle Scholar
  24. 24.
    R. Khan, T. P. Singh, and M. D. Singh. Synlett, 2014, 25, 696.CrossRefGoogle Scholar
  25. 25.
    L. R. Domingo, M. T. Picher, J. Andrés, and V. S. Safont. J. Org. Chem., 1997, 62, 1775.CrossRefGoogle Scholar
  26. 26.
    S. Noorizadeh and H. Maihami. J. Mol. Struct.: THEOCHEM, 2006, 763, 133.CrossRefGoogle Scholar
  27. 27.
    B. R. Beno, K. Houk, and D. A. Singleton. J. Am. Chem. Soc., 1996, 118, 9984.CrossRefGoogle Scholar
  28. 28.
    L. R. Domingo, M. J. Aurell, P. Pérez, and R. Contreras. J. Phys. Chem. A, 2002, 106, 6871.CrossRefGoogle Scholar
  29. 29.
    N. Çelebi–Ölçüm, A. Sanyal, and V. Aviyente. J. Org. Chem., 2009, 74, 2328.CrossRefGoogle Scholar
  30. 30.
    S. S. Borisevich, A. V. Kovalskaya, I. P. Tsypysheva, and S. L. Khursan. J. Theor. Comput. Chem., 2014, 13, 1450048.CrossRefGoogle Scholar
  31. 31.
    H. Chemouri and S. Mekelleche. J. Theor. Comput. Chem., 2006, 5, 197.CrossRefGoogle Scholar
  32. 32.
    M. A. Fernández–Herrera, C. Zavala–Oseguera, J. L. Cabellos, J. Sandoval–Ramírez, L. R. Domingo, and G. Merino. J. Mol. Model., 2014, 20, 2207.CrossRefGoogle Scholar
  33. 33.
    B. Szefczyk, T. Andruniów, and W. A. Sokalski. J. Mol. Model., 2008, 14, 727.CrossRefGoogle Scholar
  34. 34.
    T. M. Barhoumi–Slimi, K. Essalah, M.a.K. Sanhoury, M. Ourévitch, and M. M. El Gaied. Struct. Chem., 2014, 25, 799.CrossRefGoogle Scholar
  35. 35.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  36. 36.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hrat–chian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Ra–ghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03. Wallingford, CT: Gaussian, Inc., 2003.Google Scholar
  37. 37.
    C. Gonzalez and H. B. Schlegel. J. Phys. Chem., 1990, 94, 5523.CrossRefGoogle Scholar
  38. 38.
    U. C. Singh and P. A. Kollman. J. Comput. Chem., 1984, 5, 129.CrossRefGoogle Scholar
  39. 39.
    B. H. Besler, K. M. Merz, and P. A. Kollman. J. Comput. Chem., 1990, 11, 431.CrossRefGoogle Scholar
  40. 40.
    F. De Proft, J. M. Martin, and P. Geerlings. Chem. Phys. Lett., 1996, 256, 400.CrossRefGoogle Scholar
  41. 41.
    A. Bazian, S. A. Beyramabadi, A. Davoodnia, M. Pordel, and M. R. Bozorgmehr. Res. Chem. Intermed., 2016, 42, 6125.CrossRefGoogle Scholar
  42. 42.
    W. Benchouk and S. Mekelleche. J. Mol. Struct.: THEOCHEM, 2008, 862, 1.CrossRefGoogle Scholar
  43. 43.
    F. Moeinpour. Chin. J. Chem. Phys., 2010, 23, 165.CrossRefGoogle Scholar
  44. 44.
    M. J. Aurell, L. R. Domingo, P. Pérez, and R. Contreras. Tetrahedron, 2004, 60, 11503.CrossRefGoogle Scholar
  45. 45.
    P. Chattaraj. J. Phys. Chem. A, 2001, 105, 511.CrossRefGoogle Scholar
  46. 46.
    R. G. Parr and W. Yang. Annu. Rev. Phys. Chem., 1995, 46, 701.CrossRefGoogle Scholar
  47. 47.
    R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512.CrossRefGoogle Scholar
  48. 48.
    W. Yang and W. J. Mortier. J. Am. Chem. Soc., 1986, 108, 5708.CrossRefGoogle Scholar
  49. 49.
    H. Chermette. J. Comput. Chem., 1999, 20, 129.CrossRefGoogle Scholar
  50. 50.
    P. Geerlings, F. De Proft, and W. Langenaeker. Chem. Rev. (Washington, DC, US), 2003, 103, 1793.CrossRefGoogle Scholar
  51. 51.
    R. G. Parr and W. Yang. J. Am. Chem. Soc., 1984, 106, 4049.CrossRefGoogle Scholar
  52. 52.
    P. W. Ayers and R. G. Parr. J. Am. Chem. Soc., 2000, 122, 2010.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Bazian
    • 1
    • 2
  • S. A. Beyramabadi
    • 1
    Email author
  • A. Davoodnia
    • 1
  • M. R. Bozorgmehr
    • 1
    • 2
  • M. Pordel
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Young Researchers and Elite Club, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations