Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1797–1803 | Cite as

Redetermination and Density Functional Studies of N,N′-(Disulfanediyldibenzene-2,1-Diyl) Dipyridine-2-Carboxamide

  • S. Ö. YildirimEmail author
  • Z. Büyükmumcu
  • S. D. Dogan
  • R. J. Butcher
Article
  • 7 Downloads

Abstract

The title compound C24H18N4O2S2 is synthesized via the azide method and its structure is redetermined at 100(2) K. The title structure, N,N′-(disulfanediyldibenzene-2,1-diyl)dipyridine-2-carboxamide is redetermined from the data published by Lumb, Hundal, and Hundal (Inorg. Chem., 2014, 53, 7770-7779). The redetermination is of significantly higher precision than a previous low-temperature structure and the improvement of the present redetermination consists in a released geometry of the 1,2-diphenyldisulfane group. The molecular structure crystallizes in the triclinic space group, P-1, with a = 7.3492(3) Å, b = 11.6753(5) Å, c = 13.1814(6) Å, α = 95.077(4)°, β = 105.316(4)°, γ = 100.759(4)°, and V = 1060.28(8) Å3. The S–S bond length of 2.0758(4) Å and S–C distances of 1.7818(13) Å and 1.7767(13) Å for this redetermination are much closer to those observed in comparable structures. Intraand intermolecular N–H…S, N–H…N, C–H…O, C–H…S hydrogen bonds are present in the crystal structure. The molecular geometry of the title compound is optimized by the DFT method and the calculated geometrical parameters are compared with experimental ones. The NBO analysis of possible intramolecular hydrogen bonds is made on the optimized structure for comparison.

Keywords

structural analysis acyl azide density functional theory NBO analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) Ş. D. Doğan. Tetrahedron, 2017, 73, 2217CrossRefGoogle Scholar
  2. (b).
    S. Özcan and M. Balci. Tetrahedron, 2008, 64, 5531CrossRefGoogle Scholar
  3. (c).
    Ş. D. Doğan, E. Demirpolat, M. B. Y. Aycan, and M. Balci. Tetrahedron, 2015, 71, 252CrossRefGoogle Scholar
  4. (d).
    M. Tireli, M. J. Kulcsar, N. Cindro, D. Gracin, N. Bliskov, M. Borovina, M. Curic, I. Halasz, and K. Uzarevic. Chem. Commun., 2015, 51, 8058CrossRefGoogle Scholar
  5. (e).
    A. V. Budruev and D. Y. Sinjagina. Russ. Chem. Bull., 2013, 62, 1366CrossRefGoogle Scholar
  6. (f).
    Ş. D. Doğan, U. Tayfun, and M. Doğan. J. Compos. Mater., 2016, 50, 2477.CrossRefGoogle Scholar
  7. 2.
    (a) I. Lumb, M. S. Hundal, and G. Hundal. Inorg. Chem., 2014, 53, 7770–7779CrossRefGoogle Scholar
  8. (b).
    H. E. Swaisgood. Biotechnol. Adv., 2005, 23, 131–171.CrossRefGoogle Scholar
  9. (c).
    A. Gupta, H. W. T. Van Vlijmen, and J. Singh. Protein Sci., 2004, 13, 2045–2058CrossRefGoogle Scholar
  10. (d).
    D. Meinhold, M. Beach, Y. Shao, R. Osuna, and W. Colón. Biochemistry, 2006, 45, 9767–9777.CrossRefGoogle Scholar
  11. 3.
    G. M. Sheldrick. Acta Crystallogr., 2015, C71, 3–8.Google Scholar
  12. 4.
    L. J. Farrugia. J. Appl. Crystallogr., 2012, 45, 849–854.CrossRefGoogle Scholar
  13. 5.
    O. D. Rigaku. CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England, 2015.Google Scholar
  14. 6.
    R. C. Clark and J. S. Reid. Acta Crystallogr., 1995, A51, 887–897.Google Scholar
  15. 7.
    J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Phys. Rev. Lett., 2003, 91, 146401.CrossRefGoogle Scholar
  16. 8.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, 2010.Google Scholar
  17. 9.
    A. Hordvik. Acta Chem. Scand., 1966, 20, 1885–1891.CrossRefGoogle Scholar
  18. 10.
    F. H. Allen. Acta Crystallogr., 2002, B58, 380–388.Google Scholar
  19. 11.
    A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, and R. Taylor. J. Chem. Soc. Dalton Trans., 1989, SI–S83.Google Scholar
  20. 12.
    J. D. Lee and M. W. R. Bryant. Acta Crystallogr., 1970, B26, 1729–1735.Google Scholar
  21. 13.
    R. S. I. Mulliken. J. Chem. Phys., 1955, 23, 1833–1840.CrossRefGoogle Scholar
  22. 14.
    A. Szabo and N. S. Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, Mineola, 1996.Google Scholar
  23. 15.
    A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899–926.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Ö. Yildirim
    • 1
    Email author
  • Z. Büyükmumcu
    • 2
  • S. D. Dogan
    • 3
  • R. J. Butcher
    • 4
  1. 1.Department of Physics, Faculty of SciencesErciyes UniversityKayseriTurkey
  2. 2.Department of Chemistry, Faculty of SciencesErciyes UniversityKayseriTurkey
  3. 3.Department of ChemistryHoward UniversityWashington DCUSA
  4. 4.Department of Pharmaceutical Basic Sciences, Faculty of PharmacyErciyes UniversityKayseriTurkey

Personalised recommendations