Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1791–1796 | Cite as

A Computational Approach for Hydrolysis of the Third-Generation Anticancer Drug: Trans-Platinum(Ii) Complex of 3-Aminoflavone

  • N. Sadeghi
  • R. Ghiasi
  • S. Jamehbozorgi
Article
  • 8 Downloads

Abstract

In this study, hydrolysis of the anticancer drug trans-bis-(3-amino-flavone)dichloridoplatinum(II) (trans- Pt(3-af)2Cl2; TCAP) in gas and solution phases is studied. With the polarizable continuum model (PCM) model the complex computational study is performed in an aqueous solvent. Before the complex interaction with the target biomolecules, two typical reactions involved in the complex hydrolysis include the first and second hydrolysis processes. Thermodynamic and kinetic parameters of the hydrolysis reactions are analyzed. The variations of two structural parameters of the reaction are discussed.

Keywords

transplatin anticancer drug solvent effect hydrolysis thermodynamics and kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. H. Higgins, A. J. Tucker, B. S. J. Winkelb, and K. J. Brewer. Chem. Commun., 2012, 48, 67.CrossRefGoogle Scholar
  2. 2.
    C. Zhang and S. J. Lippard. Curr. Opin. Chem. Biol., 2003, 7, 481.CrossRefGoogle Scholar
  3. 3.
    J. Reedijk. Eur. J. Inorg. Chem., 2009, 1303.Google Scholar
  4. 4.
    B. Rosenberg, V. Camp, and T. Crigas. Nature, 1965, 205, 698.CrossRefGoogle Scholar
  5. 5.
    K. Ito, S. Adachi, Y. Itani, M. Koyama, K. Hori, R. Chin, M. Shintani, K. Beppu, S. Kawai, and K. Saito. Jpn. J. Clin. Oncol., 1999, 29, 299.CrossRefGoogle Scholar
  6. 6.
    T. C. Johnstone and S. J. Lippard. Inorg. Chim. Acta, 2015, 424, 254.CrossRefGoogle Scholar
  7. 7.
    J. J. Wilson and S. J. Lippard. Chem. Rev., 2014, 114, 4470.CrossRefGoogle Scholar
  8. 8.
    J. Alemán, V. D. Solar, A. Alvarez–Valdés, C. Ríos–Luci, J. M. Padrón, and C. Navarro–Ranninger. MedChemComm, 2011, 2, 789.CrossRefGoogle Scholar
  9. 9.
    M. Zhu and L. Zhou. Comput. Theor. Chem., 2015, 1051, 24.CrossRefGoogle Scholar
  10. 10.
    S. Banerjee and A. K. Mukherjee. Comput. Theor. Chem., 2012, 991, 116.CrossRefGoogle Scholar
  11. 11.
    S. Banerjee, P. S. Sengupta, and A. K. Mukherjee. Chem. Phys. Lett., 2010, 487, 108.CrossRefGoogle Scholar
  12. 12.
    M. E. Alberto, M. F. A. Lucas, and M. Pavelka. J. Phys. Chem. B, 2009, 113, 14473.CrossRefGoogle Scholar
  13. 13.
    M. E. Alberto, M. F. Lucas, M. Pavelka, and N. Russo. J. Phys. Chem. B, 2008, 112, 10765.CrossRefGoogle Scholar
  14. 14.
    O. Bradáč, T. Zimmermann, and J. V. Burda. J. Mol. Model., 2008, 14, 705.CrossRefGoogle Scholar
  15. 15.
    J. Raber, C. Zhu, and L. A. Eriksson. J. Phys. Chem. B, 2005, 109, 11006.CrossRefGoogle Scholar
  16. 16.
    A. Sarmah and R. K. Roy. RSC Adv., 2013, 3, 2822.Google Scholar
  17. 17.
    M. E. Alberto, C. Cosentino, and N. Russo. Struct. Chem., 2012, 23, 831.CrossRefGoogle Scholar
  18. 18.
    M. Fabijańska, K. Studzian, L. Szmigiero, A. J. Rybarczyk–Pirek, A. Pfitzner, B. Cebula–Obrzut, P. Smolewski, E. Zynera, and J. Ochocki. Dalton Trans., 2015, 44, 938.CrossRefGoogle Scholar
  19. 19.
    J. K.–C. Lau and D. V. Deubel. J. Chem. Theor. Comput., 2006, 2, 103.CrossRefGoogle Scholar
  20. 20.
    D. V. Deubel. J. Am. Chem. Soc., 2006, 128, 1654.CrossRefGoogle Scholar
  21. 21.
    J. V. Burda, M. Zeizinger, and J. Leszczynski. J. Comput. Chem., 2005, 26, 907.CrossRefGoogle Scholar
  22. 22.
    M. Pavelka, M. F. A. Lucas, and N. Russo. Chem. Eur. J., 2007, 13, 10108.CrossRefGoogle Scholar
  23. 23.
    Z. Chval and M. Sip. J. Mol. Struct.:THEOCHEM, 2000, 532, 59.CrossRefGoogle Scholar
  24. 24.
    A. Robetazzi and J. A. Platts. J. Comput. Chem., 2004, 25, 1060.CrossRefGoogle Scholar
  25. 25.
    J. V. Burda, M. Zeizinger, and J. Leszczynski. J. Comput. Chem., 2005, 26, 907.CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava–chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09. Revision A.02. Wallingford CT: Gaussian, Inc., 2009.Google Scholar
  27. 27.
    D. Becke. Phys. Rev. A, 1998, 38, 3098.CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew. Phys. Rev. B, 1986, 33, 8822.CrossRefGoogle Scholar
  29. 29.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.CrossRefGoogle Scholar
  30. 30.
    A. J. H. Wachters. J. Chem. Phys., 1970, 52, 1033.CrossRefGoogle Scholar
  31. 31.
    P. J. Hay. J. Chem. Phys., 1977, 66, 4377.CrossRefGoogle Scholar
  32. 32.
    A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639.CrossRefGoogle Scholar
  33. 33.
    D. Rappoport and F. Furche. J. Chem. Phys., 2010, 133, 134105CrossRefGoogle Scholar
  34. 34.
    D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss. Theor. Chim. Acta, 1990, 77, 123.CrossRefGoogle Scholar
  35. 35.
    C. Gonzalez and H. B. Schlegel. J. Chem. Phys., 1990, 94, 5523.CrossRefGoogle Scholar
  36. 36.
    C. Gonzalez and H. B. Schlegel. J. Chem. Phys., 1989, 90, 2154.CrossRefGoogle Scholar
  37. 37.
    J. Tomasi, B. Mennucci, and R. Cammi. Chem. Rev., 2005, 105, 2999.CrossRefGoogle Scholar
  38. 38.
    H. J. Eyring. Chem. Phys., 1935, 3, 107.Google Scholar
  39. 39.
    W. F. K. Wynne–Jones and H. J. Eyring. Chem. Phys., 1935, 3, 492.Google Scholar
  40. 40.
    H. Eyring. Chem. Rev., 1935, 17, 65.CrossRefGoogle Scholar
  41. 41.
    J. K. C. Lau and D. V. Deubel. J. Chem. Theor. Comput., 2006, 2, 103.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Department of Chemistry, East Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Hamedan BranchIslamic Azad UniversityHamedanIran

Personalised recommendations