Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1784–1790 | Cite as

Theoretical Study of the Arene Ligand Effect on the Structure and Properties of Cr(CO)3(Arene) Complexes (Arene = Benzene, Biphenyl, Triphenly, Tetraphenyl)

  • E. Ardestani
  • R. GhiasiEmail author
  • J. M. Tabatabai
Article
  • 5 Downloads

Abstract

In the present research, the impact of the arene ligand on the dipole moment, electronic structure, hyperpolarizability, and frontier orbital energy in Cr(CO)3(arene) complexes (arene = benzene, biphenyl, triphenly, tetraphenyl) is studied by MPW1PW91 quantum chemical computations. The chemical bond nature between the arene ligand and the Cr(CO)3 fragment is demonstrated through the energy decomposition analysis (EDA). The percentage composition of frontier orbitals considering the specified groups of these complexes is obtained to investigate the features of metal–ligand bonds. The internal reorganization energy values are calculated to study the charges mobility. The quadrupole polarization magnitude of the carbonyl carbon atom is calculated as an assessment of the amount of pπ–dπ back donation in Cr–CO bonds. Moreover, the effect of aromatic ring numbers is calculated on the βtot values for these complexes.

Keywords

arene complex substituent effect energy decomposition analysis (EDA) hyperpolarizability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_1064_MOESM1_ESM.pdf (48 kb)
Supplementary material, approximately 48 KB.

References

  1. 1.
    J. Pearson. Metallo–Organic Chemistry. New York: Wiley, 1985.Google Scholar
  2. 2.
    F. Nunzi, F. Mercuri, N. Re, and A. Sgamellotti. J. Phys. Chem. B, 2002, 10, 10622.CrossRefGoogle Scholar
  3. 3.
    R. C. Dunbar. J. Phys. Chem. A, 2002, 106, 9809.CrossRefGoogle Scholar
  4. 4.
    J. O. C. Jiménez–Halla, J. Robles, and M. Sola. J. Phys. Chem. A, 2008, 112, 1202.CrossRefGoogle Scholar
  5. 5.
    S. K. Mandal and A. Sarkar. J. Org. Chem., 1999, 64, 2454.CrossRefGoogle Scholar
  6. 6.
    B. C. Maity, V. M. Swamy, and A. Sarkar. Tetrahedron Lett., 2001, 42, 4373.CrossRefGoogle Scholar
  7. 7.
    C. Bolm and K. Muniz. Chem. Soc. Rev., 1999, 28, 51.CrossRefGoogle Scholar
  8. 8.
    D. V. Simion and T. S. Sorensen. J. Am. Chem. Soc., 1996, 118, 7345.CrossRefGoogle Scholar
  9. 9.
    M. Rosillo, G. Dominguez, and J. Perez–Castells. Chem. Soc. Rev., 2007, 36, 1589.CrossRefGoogle Scholar
  10. 10.
    C. H. Suresh, N. Koga, and S. R. Gadre. Organometallics, 2000, 19, 3008.CrossRefGoogle Scholar
  11. 11.
    L. Akilandeswari, M. Jaccob, and P. Venuvanalingam. J. Chem. Sci., 2009, 121, 859.CrossRefGoogle Scholar
  12. 12.
    J. T. Price and T. S. Sorensen. Can. J. Chem., 1968, 46, 515.CrossRefGoogle Scholar
  13. 13.
    G. Bringmann, R. Walter, and R. Weirich. Angew. Chem., Int. Ed. Engl., 1990, 29, 977.CrossRefGoogle Scholar
  14. 14.
    K. A. Lutomski and A. I. Meyers. Asymmetic Synthesis via Chiral Oxazolines. Asymmetric Synthesis, Vol. 3. New York: Academic Press, 1984.Google Scholar
  15. 15.
    A. I. Meyers and K. A. Lutomski. J. Am. Chem. Soc., 1982, 104, 879.CrossRefGoogle Scholar
  16. 16.
    M. Uemura, H. Nishimura, and K. Kamikawa. Inorg. Chim. Acta, 1994, 222, 63.CrossRefGoogle Scholar
  17. 17.
    M. Uemura, H. Nishimurat, K. Kamikawa, K. Nakayama, and Y. Hayashi. Tetrahedron Lett., 1994, 35, 1909.CrossRefGoogle Scholar
  18. 18.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Ra–ghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09 (Version Revision A.02). Wallingford CT: Gaussian, Inc., 2009.Google Scholar
  19. 19.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.CrossRefGoogle Scholar
  20. 20.
    A. J. H. Wachters. J. Chem. Phys., 1970, 52, 1033.CrossRefGoogle Scholar
  21. 21.
    P. J. Hay. J. Chem. Phys., 1977, 66, 4377.CrossRefGoogle Scholar
  22. 22.
    A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639.CrossRefGoogle Scholar
  23. 23.
    D. Rappoport and F. Furche. J. Chem. Phys., 1980, 133, 134105.CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  25. 25.
    N. M. O′Boyle, A. L. Tenderholt, and K. M. Langner. J. Comp. Chem., 2008, 29, 839.CrossRefGoogle Scholar
  26. 26.
    T. Lu and F. Chen. J. Mol. Graphics Model., 2012, 38, 314.CrossRefGoogle Scholar
  27. 27.
    T. Lu and F. Chen. J. Comp. Chem., 2012, 33, 580.CrossRefGoogle Scholar
  28. 28.
    T. A. Keith. AIMAll (Version 13.11.04). Overland Park KS, USA: TK Gristmill Software, 2013. aim.tkgristmill.com.Google Scholar
  29. 29.
    S. Li. Semiconductor Physical Electronic. 2nd ed. USA: Springer, 2006.CrossRefGoogle Scholar
  30. 30.
    M. Akkurt, T. Holeckek, and H. Soylu. Z. Kristallogr., 1987, 181, 161.CrossRefGoogle Scholar
  31. 31.
    T. W. Panunto, Z. Urbanczyk–Lipkowska, R. Johnson, and M. C. Etter. J. Am. Chem. Soc., 1987, 109, 7786.CrossRefGoogle Scholar
  32. 32.
    M. C. Etter and P. W. Baures. J. Am. Chem. Soc., 1988, 110, 639.CrossRefGoogle Scholar
  33. 33.
    C. Bosshard, R. Spreiter, L. Degiorgi, and P. Gunter. Phys. Rev. B, 2002, 66, 205107.CrossRefGoogle Scholar
  34. 34.
    C. G. Gray and K. E. Gubbins. Theory of Molecular Fluids. New York: Clarendon Press, Oxford University Press, 1984.Google Scholar
  35. 35.
    F. Cortés–Guzmán and R. F. W. Bader. Coord. Chem. Rev, 2005, 249, 633.CrossRefGoogle Scholar
  36. 36.
    C. Foroutan–Nejad, S. Shahbazian, and P. Rashidi–Ranjbar. Phys. Chem. Chem. Phys., 2011, 13, 4576.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Central Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, East Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations