Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1776–1783 | Cite as

Dft Study on the Co Catalytic Oxidation Reaction on Ptcu-Embedded Graphene

  • Y. C. Tong
  • Q. Y. WangEmail author
  • Z. Li
  • L. B. Yu


PtCu-embedded graphene (PtCu/graphene) is one of the high-efficiency catalysts in catalytic oxidation of CO. In this paper, CO catalytic oxidation on PtCu/graphene is studied by density functional theory. According to the calculation, the coadsorption configuration is more stable than the configuration of O2 or CO adsorption on PtCu/graphene. Thus, the reaction mechanism of catalytic CO oxidation is the LH mechanism, which proceeds via two steps with barrier energies of 0.21 eV and 0.52 eV, respectively. Compared with pure Pt/graphene and Cu/graphene, Pt mixed in Cu can lower the barrier energy, improving the catalytic activity. Therefore, the research of PtCu/graphene can provide a certain reference value and guidance for the study of another similar catalytic CO oxidation.


catalytic CO oxidation density functional theory PtCu/graphene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ma, Y. Tang, G. Yang, J. Zeng, C. He, and Z. Lu. Appl. Surf. Sci., 2015, 328, 71–77.CrossRefGoogle Scholar
  2. 2.
    L. Li, W. Han, J. Zhang, G. Lu, and Z. Tang. Microporous Mesoporous Mater., 2016, 231, 9–20.CrossRefGoogle Scholar
  3. 3.
    D. Ma, Q. Wang, T. Li, Z. Tang, G. Yang, C. He, and Z. Lu. J. Mater. Chem. C, 2015, 3, 9964–9972.CrossRefGoogle Scholar
  4. 4.
    S. Wannakao, T. Nongnual, P. Khongpracha, T. Maihom, and J. Limtrakul. J. Phys. Chem. C, 2012, 116, 16992–16998.CrossRefGoogle Scholar
  5. 5.
    Y. Tang, L. Pan, W. Chen, C. Li, Z. Shen, and X. Dai. Appl. Phys. A, 2015, 119, 475–485.CrossRefGoogle Scholar
  6. 6.
    H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell′ Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Wurth, M. Persson, J. K. Nørskov, F. Abild–Pdeersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson. Science, 2015, 347, 978–982.CrossRefGoogle Scholar
  7. 7.
    X. Duan, K. O′Donnell, H. Sun, Y. Wang, and S. Wang. Small, 2015, 25, 3036–3044.CrossRefGoogle Scholar
  8. 8.
    Z. Jiang, Y. Yang, W. Shangguan, and Z. Jiang. J. Phys. Chem. C, 2012, 116, 19396–19404.CrossRefGoogle Scholar
  9. 9.
    O. Balmes, G. Prevot, X. Torrelles, E. Lundgren, and S. Ferrer. J. Catal., 2014, 309, 33–37.CrossRefGoogle Scholar
  10. 10.
    K. Bleakley and P. Hu. J. Am. Chem. Soc., 1999, 121, 7644–7652.CrossRefGoogle Scholar
  11. 11.
    X. Q. Gong, Z. P. Liu, R. Raval, and P. Hu. J. Am. Chem. Soc., 2004, 126, 8/9.CrossRefGoogle Scholar
  12. 12.
    D. J. Liu. J. Phys. Chem. C, 2007, 111, 14698–14706.CrossRefGoogle Scholar
  13. 13.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Science, 2004, 306, 666–669.CrossRefGoogle Scholar
  14. 14.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Nature, 2005, 438, 197–200.CrossRefGoogle Scholar
  15. 15.
    C. Gómez–Navarro, M. Burghard, and K. Kern. Nano Lett., 2008, 8, 2045–2049.CrossRefGoogle Scholar
  16. 16.
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Nano Lett., 2008, 8, 902–907.CrossRefGoogle Scholar
  17. 17.
    X. W. Yu, K. X. Sheng, Y. Chen, C. Li, and G. Q. Shi. Acta Chim. Sin., 2014, 72, 319–332.CrossRefGoogle Scholar
  18. 18.
    A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykko, and R. M. Nieminen. Phys. Rev. Lett., 2009, 102, 126807.CrossRefGoogle Scholar
  19. 19.
    J. J. Shi and J. J. Zhu. Electrochim. Acta, 2011, 56, 6008–6013.CrossRefGoogle Scholar
  20. 20.
    S. L. Liu, J. Wang, J. Zeng, J. Qu, Z. Li, X. Liu, and S. Yang. J. Power Sources, 2010, 195, 4628–4633.CrossRefGoogle Scholar
  21. 21.
    Y. N. Tang, Z. X. Yang, and X. Q. Dai. Phys. Chem. Chem. Phys., 2012, 14, 16566–16572.CrossRefGoogle Scholar
  22. 22.
    Z. P. Liu, P. Hu, and A. Alavi. J. Phys. Chem. C, 2002, 124, 14770–14779.Google Scholar
  23. 23.
    Y. H. Lu, M. Zhou, C. Zhang, and Y. P. Feng. J. Phys. Chem. C, 2009, 113, 20156–20160.CrossRefGoogle Scholar
  24. 24.
    Y. F. Li, Z. Zhou, G. T. Yu, W. Chen, and Z. F. Chen. J. Phys. Chem. C, 2010, 114, 6250–6254.CrossRefGoogle Scholar
  25. 25.
    E. H. Song, Z. Wen, and Q. Jiang,. J. Phys. Chem. C, 2011, 115, 3678–3683.CrossRefGoogle Scholar
  26. 26.
    G. Samjeské, H. Wang, T. Löffler, and H. Baltruschat. Electrochim. Acta, 2002, 47, 3681–3692.CrossRefGoogle Scholar
  27. 27.
    S. R. Brankovic, J. X. Wang, Y. Zhu, R. Sabatini, J. McBreen, and R. R. Adžic. J. Electroanal. Chem., 2002, 524, 231–241.CrossRefGoogle Scholar
  28. 28.
    N. Todoroki, H. Osano, T. Maeyama, H. Yoshida, and T. Wadayama. Appl. Surf. Sci., 2009, 256, 943–947.CrossRefGoogle Scholar
  29. 29.
    J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  30. 30.
    B. Delley. J. Chem. Phys., 1990, 92, 508.CrossRefGoogle Scholar
  31. 31.
    B. Delley. J. Chem. Phys., 2000, 113, 7756.CrossRefGoogle Scholar
  32. 32.
    M. Zhou, Y. H. Lu, Y. Q. Cai, C. Zhang, and Y. P. Feng. Nanotechnology, 2011, 22, 385502.CrossRefGoogle Scholar
  33. 33.
    C. Huang, X. Ye, C. Chen, S. Lin, and D. Xie. Comput. Theor. Chem., 2013, 1011, 5–10.CrossRefGoogle Scholar
  34. 34.
    Y. Tang, Z. Yang, and X. Dai. Phys. Chem. Chem. Phys., 2012, 14, 16566–16572.CrossRefGoogle Scholar
  35. 35.
    S. F. Boys and F. Bernardi. Mol. Phys., 1970, 19, 553–566.CrossRefGoogle Scholar
  36. 36.
    Y. Inada and H. Orita. J. Comput. Chem., 2007, 29, 225–232.CrossRefGoogle Scholar
  37. 37.
    L. M. Molina and B. Hammer. J. Catal., 2005, 233, 399–404.CrossRefGoogle Scholar
  38. 38.
    W. An, Y. Pei, and X. C. Zeng. Nano Lett., 2008, 8, 195–202.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Hexi UniversityKey Laboratory of Hexi Corridor Resources Utilization of GansuZhangyeP. R. China

Personalised recommendations