Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1691–1706 | Cite as

Xanes Specroscopic Diagnostics of the 3D Local Atomic Structure of Nanostructured Materials

  • A. N. KravtsovaEmail author
  • L. V. Guda
  • O. E. Polozhentsev
  • I. A. Pankin
  • A. V. Soldatov
Article
  • 19 Downloads

Abstract

A review of current works on XANES spectroscopy applied for the determination of parameters of a threedimensional local atomic structure of nanostructured materials is given. Special attention is paid to a new method based on the theoretical analysis of XANES spectra by means of multivariate interpolation. The uniqueness of the technique consists not only in the highly accurate (up to 0.01 Å) determination of interatomic distances in materials without a long-range order in the atomic arrangement but also the estimation of the angular distribution of atoms (i.e. chemical bond angles) in any condensed materials. Several types of nanostructured materials, including coordination compounds, semiconductor quantum dots, nanosized structures in quasicrystals and extraterrestrial materials are given as examples.

Keywords

3D local atomic structure XANES spectroscopy density functional theory synchrotron radiation nanostructured materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lee. X-Ray Diffraction for Materials Research: From Fundamentals to Applications. UK: Taylor and Francis, 2016.Google Scholar
  2. 2.
    Materials Characterization Using Nondestructive Evaluation (NDE) Methods /Eds. G. Huebschen, I. Altpeter, R. Tshuncky, and J.-G. Herrmann. Amsterdam: Elsevier, 2016.Google Scholar
  3. 3.
    D. Natelson. Nanostructures and Nanotechnology. UK, Cambridge: Cambridge University Press, 2015.Google Scholar
  4. 4.
    J. C. H. Spence. High-Resolution Electron Microscopy. UK, Oxford: Oxford University Press, 2013.Google Scholar
  5. 5.
    L. N. Mazalov. X-Ray Spectra [in Russian]. Novosibirsk: Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 2003.Google Scholar
  6. 6.
    J. van Bokhoven and C. Lamberti. X-ray Absorption and X-ray Emission Spectroscopy. Theory and Applications. UK: Willey, 2016.Google Scholar
  7. 7.
    XAFS Techniques for Catalysts, Nanomaterials, and Surfaces /Eds. Y. Iwasawa, K. Asakura, M. Tada. Switzerland: Springer, 2017.Google Scholar
  8. 8.
    G. V. Fetisov. Synchrotron Radiation. Methods of Studying the Matter Structure [in Russian]. Moscow: Fizmatlit, 2007.Google Scholar
  9. 9.
    I. Ya. Nikiforov. Interaction of X-Ray Radiation with Matter [in Russian]. Rostov-on-Don: Don State Technical University, 2011.Google Scholar
  10. 10.
    C. S. Schnohr and M. C. Ridgway. X-ray Absorption Spectroscopy of Semiconductors. Heidelberg, 2015.Google Scholar
  11. 11.
    M. Newville. Rev. Mineral. Geochem., 2014, 78,33.Google Scholar
  12. 12.
    S. Della Longa, S. Pin, R. Cortes, et al. Biophys J., 1998, 75, 3154.Google Scholar
  13. 13.
    F. A. Lima, T. J. Penfold, R. M. van der Veen, et al. Phys. Chem. Chem. Phys., 2014, 16, 1617.Google Scholar
  14. 14.
    Y. Wang, Sh. Jin, J. Li, et al. Radiat. Phys. Chem., 2017, 137,88.Google Scholar
  15. 15.
    M. Benfatto and S. Della Longa. J. Synchrotron Radiat., 2001, 8, 1087.Google Scholar
  16. 16.
    G. Smolentsev and A. V. Soldatov. J. Synchrotron Radiat., 2006, 13,19.Google Scholar
  17. 17.
    G. Smolentsev and A. V. Soldatov. Comput. Mater. Sci., 2007, 39,569.Google Scholar
  18. 18.
    Developed FitIt 3.0 program package may be obtained free of charge at http://nano.sfedu.ru/fitit_r.html.Google Scholar
  19. 19.
    F. Ericson, A. Honarfar, O. Prakash, et al. Chem. Phys. Lett., 2017, 683,559.Google Scholar
  20. 20.
    Y. Liu, W. Xu, J. Zhang, et al. J. Am. Chem. Soc., 2017, 139, 5023.Google Scholar
  21. 21.
    A. Drzewiecka-Antonik, W. Ferenc, P. Rejmak, et al. Polyhedron, 2017, 133,54.Google Scholar
  22. 22.
    D. Kochubey, V. Kaichev, A. Saraev, et al. J. Phys. Chem. C., 2013, 117, 2753.Google Scholar
  23. 23.
    N. Schuth, S. Mebs, H. Gehring, et al. J. Phys.: Conf. Ser., 2016, 712, 012134.Google Scholar
  24. 24.
    M. C. Feiters, G. A. Metselaar, B. B. Wentzel, et al. Ind. Eng. Chem. Res., 2005, 44, 8631.Google Scholar
  25. 25.
    M. A. Kremennaya, M. A. Soldatov, V. A. Streltsov, and A. V. Soldatov. J. Phys.: Conf. Ser., 2016, 712, 012138.Google Scholar
  26. 26.
    I. Alperovich, G. Smolentsev, D. Moonshiram, et al. J. Am. Chem. Soc., 2011, 133, 15786.Google Scholar
  27. 27.
    I. Alperovich, D. Moonshiram, J. J. Concepcion, and Y. Pushkar. J. Phys. Chem. C, 2013, 117, 18994.Google Scholar
  28. 28.
    K. A. Lomachenko, C. Garino, E. Gallo, et al. Phys. Chem. Chem. Phys., 2013, 15, 16152.Google Scholar
  29. 29.
    M. D. Hall, H. L. Daly, J. Z. Zhang, et al. Metallomics, 2012, 4,568.Google Scholar
  30. 30.
    O. E. Polozhentsev, V. K. Kochkina, V. L. Mazalova, and A. V. Soldatov. J. Struct. Chem., 2016, 57, 1558.Google Scholar
  31. 31.
    G. A. Fernandez, A. S. Picco, M. R. Ceolin, et al. Organometallics, 2013, 32, 6315.Google Scholar
  32. 32.
    M. A. Soldatov, I. Ascone, A. Congiu-Castellano, et al. J. Phys.: Conf. Ser., 2009, 190, 012210.Google Scholar
  33. 33.
    R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. USA, New-York: Oxford University Press, 1989.Google Scholar
  34. 34.
    Recent Developments and Applications of Modern Density Functional Theory /Ed. J. M. Seminario. Amsterdam: Elsevier, 1996.Google Scholar
  35. 35.
    G. te Velde, F. M. Bickelhaupt, E. J. Baerends, et al. J. Comput. Chem., 2001, 22,931.Google Scholar
  36. 36.
    G. Kresse and J. Furthmüller. Comput. Mater. Sci., 1996, 6,15.Google Scholar
  37. 37.
    G. Kresse and J. Furthmüller. Phys. Rev. B, 1996, 54, 11169.Google Scholar
  38. 38.
    P. Giannozzi, S. Baroni, N. Bonini, et al. J. Phys.: Condens. Matter, 2009, 21, 395502.Google Scholar
  39. 39.
    P. Giannozzi, O. Andreussi, T. Brumme, et al. J. Phys.: Condens. Matter, 2017, 29, 465901.Google Scholar
  40. 40.
    G. B. Sukharina, A. N. Kravtsova, A. V. Soldatov, et al. J. Phys.: Conf. Ser., 2009, 190, 012148.Google Scholar
  41. 41.
    M. A. Evsyukova, A. N. Kravtsova, I. N. Shcherbakov, et al. J. Struct. Chem., 2010, 51(6), 1075–1080.Google Scholar
  42. 42.
    M. A. Bryleva, A. N. Kravtsova, I. N. Shcherbakov, et al. J. Struct. Chem., 2012, 53(2), 295–305.Google Scholar
  43. 43.
    A. A. Guda, S. A. Guda, M. A. Soldatov, et al. J. Phys.: Conf. Ser., 2016, 712, 012004.Google Scholar
  44. 44.
    G. Smolentsev and V. Sundström. Coord. Chem. Rev., 2015, 304-305,117.Google Scholar
  45. 45.
    G. Smolentsev, B. Cecconi, A. Guda, et al. Chem. -Eur. J., 2015, 21, 15158.Google Scholar
  46. 46.
    S. E. Canton, X. Zhang, Y. Liu, et al. Faraday Discuss., 2015, 185,51.Google Scholar
  47. 47.
    X. Zhang, S. E. Canton, G. Smolentsev, et al. J. Am. Chem. Soc., 2014, 136, 8804.Google Scholar
  48. 48.
    G. Smolentsev, A. Guda, X. Zhang, et al. J. Phys. Chem. C, 2013, 117, 17367.Google Scholar
  49. 49.
    G. Smolentsev, A. Guda, M. Junousch, et al. Faraday Discuss., 2014, 171,259.Google Scholar
  50. 50.
    G. Smolentsev, S.E. Canton, J.V. Lockard et al. J. Electron Spectrosc. Relat. Phenom., 2011, 184,125.Google Scholar
  51. 51.
    G. Smolentsev, A. V. Soldatov, and L. X. Chen. J. Phys. Chem. A, 2008, 112, 5363.Google Scholar
  52. 52.
    J. V. Lochard, S. Kabehie, J. I. Zink, et al. J. Phys. Chem. B, 2010, 114, 14521.Google Scholar
  53. 53.
    https://www.xfel.eu/.Google Scholar
  54. 54.
    K. Hämäläinen, D. P. Siddons, J. B. Hastings, and L. E. Berman. Phys. Rev. Lett., 1991, 67, 2850.Google Scholar
  55. 55.
    O. V. Safonova, M. Tromp, J. A. van Bokhoven, et al. J. Phys. Chem. B, 2006, 110, 16162.Google Scholar
  56. 56.
    M. Green. Semiconductor Quantum Dots: Organometallic and Inorganic Synthesis. RSC Nanoscience & Nanotechnology book, 2014.Google Scholar
  57. 57.
    I. N. Demchenko, M. Chernyshova, X. He, et al. J. Phys.: Conf. Ser., 2013, 430, 012030.Google Scholar
  58. 58.
    X. He, I. N. Demchenko, W. C. Stolte, et al. J. Phys. Chem. C, 2012, 116, 22001.Google Scholar
  59. 59.
    I. N. Demchenko, M. Chernyshova, X. He, et al. X-Ray Spectrom, 2013, 42,197.Google Scholar
  60. 60.
    L. Tröger, D. Arvanitis, K. Baberschke, et al. Phys. Rev. B, 1992, 46, 3283.Google Scholar
  61. 61.
    Y. Zhang, O. Ersoy, A. Karatutlu, et al. J. Synchrotron Radiat., 2016, 23,253.Google Scholar
  62. 62.
    W. Little, A. Karatutlu, D. Bolmatov, et al. Sci. Rep., 2014, 4, 7372.Google Scholar
  63. 63.
    G. Dalba, P. Fornasini, R. Grisenti, et al. Appl. Phys. Lett., 1999, 74, 1454.Google Scholar
  64. 64.
    I. A. Pankin, A. N. Kravtsova, O. E. Polozhentsev, et al. J. Struct. Chem., 2016, 57(7), 1369–1376.Google Scholar
  65. 65.
    A. N. Kravtsova, I. A. Pankin, M. A. Soldatov, et al. J. Struct. Chem., 2016, 57(7), 1422–1428.Google Scholar
  66. 66.
    A. N. Kravtsova, A. P. Budnik, I. A. Pankin, et al. J. Struct. Chem., 2017, 58(1), 45–52.Google Scholar
  67. 67.
    D. C. Hannah, N. J. Dunn, S. Ithurria, et al. Phys. Rev. Lett., 2011, 107, 177403.Google Scholar
  68. 68.
    E. A. Weiss, R. C. Chiechi, S. M. Geyer, et al. J. Am. Chem. Soc., 2008, 130,74.Google Scholar
  69. 69.
    D. Katz, T. Wizansky, O. Millo, et al. Phys. Rev. Lett., 2002, 89, 086801.Google Scholar
  70. 70.
    M. E. Schmidt, S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest. Phys. Rev. B, 1996, 53, 12629.Google Scholar
  71. 71.
    A. L. Rogach, A. Kornowski, M. Gao, et al. J. Phys. Chem. B, 1999, 103, 3065.Google Scholar
  72. 72.
    P. Reiss, M. Protière, and L. Li. Small, 2009, 5,154.Google Scholar
  73. 73.
    M. D. Regulacio and M.-Y. Han. Acc. Chem. Res., 2010, 43,621.Google Scholar
  74. 74.
    W. Zhang, G. Chen, and J. Wang. Inorg. Chem., 2009, 48, 9723.Google Scholar
  75. 75.
    J. van Embden, J. Jasieniak, and P. Mulvaney. J. Am. Chem. Soc., 2009, 131, 14299.Google Scholar
  76. 76.
    J. R. Dethlefsen and A. Døssing. Nano Lett., 2011, 11, 1964.Google Scholar
  77. 77.
    J. Hensel, G. Wang, Y. Li, and J. Z. Zhang. Nano Lett., 2010, 10,478.Google Scholar
  78. 78.
    J. Wang, I. Mora-Seró, Z. Pan, et al. J. Am. Chem. Soc., 2013, 135, 15913.Google Scholar
  79. 79.
    A. Salant, M. Shalom, I. Hod, et al. ACS Nano, 2010, 4, 5962.Google Scholar
  80. 80.
    L. Liu, J. Hensel, R. C. Fitzmorris, et al. J. Phys. Chem. Lett., 2010, 1,155.Google Scholar
  81. 81.
    D. Litvinov, A. Rosenauer, D. Gerthsen, and N. N. Ledentsov. Phys. Rev. B, 2000, 61, 16819.Google Scholar
  82. 82.
    M. A. van Huis, A. van Veen, H. Schut, et al. Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 218,410.Google Scholar
  83. 83.
    H. Shin, D. Jang, Y. Jang, et al. J. Mater. Sci.: Mater. Electron, 2013, 24, 3744.Google Scholar
  84. 84.
    B. C. Fitzmorris, J. K. Cooper, J. Edberg, et al. J. Phys. Chem. C, 2012, 116, 25065.Google Scholar
  85. 85.
    A. M. Kelley, Q. Dai, Z.-J. Jiang, et al. Chem. Phys., 2013, 422,272.Google Scholar
  86. 86.
    H. Wei, J. Zhou, L. Zhang, et al. J. Nanomater, 2015, 2015, 764712.Google Scholar
  87. 87.
    L.-Y. Chen, C.-H. Chen, C.-H. Tseng, et al. Chem. Commun., 2011, 47, 1592.Google Scholar
  88. 88.
    G. P. Huffman, F. E. Huggins, N. Shah, et al. J. Air Waste Manage. Assoc., 2000, 50, 1106.Google Scholar
  89. 89.
    S. N. Sharma, H. Sharma, G. Singh, and S. M. Shivaprasad. Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, 244,86.Google Scholar
  90. 90.
    A. Sadoc. J. Phys. Colloq., 1986, 47, C8–1003.Google Scholar
  91. 91.
    M. Maurer. J. Phys. F: Met. Phys., 1986, 16, L223.Google Scholar
  92. 92.
    A. Sadoc, J. P. Iite, A. Polian, et al. Philos. Mag. B, 1994, 70,855.Google Scholar
  93. 93.
    A. Sadoc, J. P. Iite, A. Polian, et al. Phys. B, 1995, 208&209,495.Google Scholar
  94. 94.
    S. Yin, Z. Xie, Q. Bian, et al. J. Alloys Compd., 2008, 455,314.Google Scholar
  95. 95.
    S. Yin, Q. Bian, L. Qian, and A. Zhang. Mater. Sci. Eng., A, 2007, 465,95.Google Scholar
  96. 96.
    O. E. Polozhentsev, M. A. Bryleva, A. N. Kravtsova, et al., Izv. RAN. Ser. fizicheskaya, 2015, 79, 1322.Google Scholar
  97. 97.
    M. A. Evsyukova, G. Yalovega, A. Balerna, et al. Phys. B, 2010, 405, 2122.Google Scholar
  98. 98.
    J. Padeznik Gomilseka, I. Arconb, A. Kodreb, and J. Dolinsek. Solid State Commun., 2002, 123,527.Google Scholar
  99. 99.
    A. P. Menushenkov and Ya. V. Rakshun. Crystallogr. Rep., 2007, 52, 1006.Google Scholar
  100. 100.
    Ya. V. Rakchoun, A. P. Menushenkov, D. S. Chaitoura, et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 543,208.Google Scholar
  101. 101.
    A. P. Menushenkov, O. V. Kashurnikova, R. V. Chernikov, et al. Izv. RAN. Ser. fizicheskaya, 2008, 72, 1517.Google Scholar
  102. 102.
    B. Charrier, J. L. Hazemann, and D. Schmitt. J. Alloys Compd., 1998, 281,117.Google Scholar
  103. 103.
    R. G. Hennig, K. F. Kelton, A. E. Carlsson, and C. L. Henley. Phys. Rev. B, 2003, 67, 134202.Google Scholar
  104. 104.
    C. M. O'D. Alexander, A. P. Boss, and R. W. Carlson. Science, 2001, 293,64.Google Scholar
  105. 105.
    G. J. Flynn, S. R. Sutton, S. Wirick, et al. 45th Lunar Planet. Sci., 2014 (1959).Google Scholar
  106. 106.
    H. G. Changela, J. C. Bridges, and S. J. Gurman. Geochim. Cosmochim. Acta, 2012, 98,282.Google Scholar
  107. 107.
    K. Nagashima, A. N. Krot, and H. Yurimoto. Nature, 2004, 428,921.Google Scholar
  108. 108.
    G. J. Flynn, S. R. Sutton, B. Lai, et al. Meteorit. Planet. Sci., 2014, 49, 1626.Google Scholar
  109. 109.
    F.-R. Orthous-Daunay, E. Quirico, L. Lemelle, et al. Earth Planet. Sci. Lett., 2010, 300,321.Google Scholar
  110. 110.
    Y. Kebukawa, M. E. Zolensky, A. L. D. Kilcoyne, et al. Meteorit. Planet. Sci., 2014, 49, 2095.Google Scholar
  111. 111.
    M. Bose, R. A. Root, and S. Pizzarello. Meteorit. Planet. Sci., 2017, 52,546.Google Scholar
  112. 112.
    A. Garenne, P. Beck, G. Montes-Hernandez, et al. 45th Lunar Planet. Sci., 2014 (1941).Google Scholar
  113. 113.
    P. Beck, V. De Andrade, F.-R. Orthous-Daunay, et al. Geochim. Cosmochim. Acta, 2012, 99,305.Google Scholar
  114. 114.
    W. Satake, T. Mikouchi, and M. Miyamoto. 75th Annual Meeting of the Meteoritical Society, Australia, Cairns, 2012, (5230).Google Scholar
  115. 115.
    A. Takenouchi and T. Mikouchi. 79th Annual Meeting of the Meteoritical Society, Germany, Berlin, 2016 (6135).Google Scholar
  116. 116.
    W. Satake, P. C. Buchanan, T. Mikouchi, and M. Miyamoto. 43rd Lunar Planet. Sci., 2012 (1725).Google Scholar
  117. 117.
    S. R. Sutton, C. A. Goodrich, and S. Wirick. Geochim. Cosmochim. Acta, 2017, 204, 313.Google Scholar
  118. 118.
    S. Wirick, G. J. Flynn, S. R. Sutton, and M. E. Zolensky. 45th Lunar Planet. Sci., 2014 (1940).Google Scholar
  119. 119.
    S. B. Simon, S. R. Sutton, and L. Grossman. Geochim. Cosmochim. Acta, 2017, 189,377.Google Scholar
  120. 120.
    P. W. Kubik, D. Elmore, N. J. Conard, et al. Nature, 1986, 319,568.Google Scholar
  121. 121.
    S. J. McKibbin, T. R. Ireland, Y. Amelin, and P. Holden. Geochim. Cosmochim. Acta, 2015, 157,13.Google Scholar
  122. 122.
    M. B. Madsen, S. Morup, T. V. V. Costa, et al. Nature, 1986, 321,501.Google Scholar
  123. 123.
    M. L. Cerón Loayza and J. A. Bravo Cabrejos. Hyperfine Interact., 2011, 203,17.Google Scholar
  124. 124.
    E. Dos Santos, J. Gattacceca, P. Rochette, et al. Phys. Earth Planet. Inter., 2015, 242,50.Google Scholar
  125. 125.
    A. D. Al-Rawas, A. M. Gismelseed, A. F. Al-Kathiri, et al. Hyperfine Interact., 2008, 186,105.Google Scholar
  126. 126.
    M. I. Oshtrakh, E. V. Petrova, V. I. Grokhovsky, and V. A. Semionkin. Hyperfine Interact., 2008, 186,61.Google Scholar
  127. 127.
    K. Terada, K. Ninomiya, T. Osawa, et al. Sci. Rep., 2014, 4, 5072.Google Scholar
  128. 128.
    A. Takenouchi and T. Mikouchi. 47th Lunar Planet. Sci., 2016 (1755).Google Scholar
  129. 129.
    A. H. Peslier, D. Hnatyshin, C. D. K. Herd, et al. Geochim. Cosmochim. Acta, 2010, 74, 4543.Google Scholar
  130. 130.
    Y. Kebukawa, M. E. Zolensky, M. Freis, et al. 47th Lunar Planet. Sci., 2016 (1802).Google Scholar
  131. 131.
    S. Wirick, G. J. Flynn, C. Jacobsen, and L. P. Keller. 37th Lunar Planet. Sci., 2006 (1418).Google Scholar
  132. 132.
    H. Yabuta, S. Amari, J. Matsuda, et al. 41st Lunar Planet. Sci., 2010 (1202).Google Scholar
  133. 133.
    A. J. King, P. F. Schofield, J. F. W. Mosselmans, and S. S. Russell. 77th Annual Meteoritical Society Meeting, Morocco, Casanlanca, 2014 (5251).Google Scholar
  134. 134.
    A. Elmaleh, F. Bourdelle, A. Scholl, et al. Geochim. Cosmochim. Acta, 2015, 158,162.Google Scholar
  135. 135.
    P. F. Schofield, A. D. Smith, A. Scholl, et al. Coord. Chem. Rev., 2014, 277/278,31.Google Scholar
  136. 136.
    G. J. Flynn, S. R. Sutton, S. Wirick, et al. 43th Lunar Planet. Sci., 2012 (1089).Google Scholar
  137. 137.
    G. J. Flynn, P. Northrup, and S. Wirick. 46th Lunar Planet. Sci., 2015 (1260).Google Scholar
  138. 138.
    W. Satake, P. C. Buchanan, T. Mikouchi, and M. Miyamoto. 42nd Lunar Planet. Sci., 2011 (1608).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Kravtsova
    • 1
    Email author
  • L. V. Guda
    • 1
  • O. E. Polozhentsev
    • 1
  • I. A. Pankin
    • 1
    • 2
  • A. V. Soldatov
    • 1
  1. 1.Smart Materials Research InstituteSouthern Federal UniversityRostov-on-DonRussia
  2. 2.University of TorinoTorinoItaly

Personalised recommendations