Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1664–1673 | Cite as

An Unprecedented Trinuclear Nickel(II) Complex Assembled from an Asymmetric Salamo-Type Ligand

  • Y. Zhang
  • L.-Z. Liu
  • L. Gao
  • S.-F. Akogun
  • W.-K. DongEmail author
Article
  • 11 Downloads

Abstract

An unprecedented trinuclear Ni(II) complex assembled from an asymmetric Salamo-type ligand 6-ethoxy- 4′,6′-dichloro-2,2′-[(1,3-propylene)dioxybis(nitrilomethylidyne)]diphenol (H2L) is synthesized. The Ni(II) complex with the general formula [Ni3(L)23-OAc)2]·3CH3CN is characterized by IR, UV-vis, and fluorescence spectra and the single crystal X-ray analysis. All the Ni(II) atoms are hexacoordinated with slightly distorted octahedral symmetries. Interestingly, each Ni(II) atom is not located on the N2O2 cavity of the asymmetric Salamo-type (L)2– unit, and two μ3-OAc ions adopt an uncommon μ321 binding mode connecting the Ni1, Ni2, and Ni3 atoms. Furthermore, the crystallizing acetonitrile molecules successfully assemble into an infinite 2D network by hydrogen bonding and C–H···π interactions.

Keywords

asymmetric Salamo-type ligand Ni(II) complex synthesis crystal structure fluorescent property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Q. Song, P. P. Liu, Z. R. Xiao, et al. Inorg. Chem. Acta, 2015, 438,232.CrossRefGoogle Scholar
  2. 2.
    L. Q. Chai, G. Wang, Y. X. Sun, et al. J. Coord. Chem., 2012, 65, 1621.CrossRefGoogle Scholar
  3. 3.
    H. L. Wu, Y. C. Bai, Y. H. Zhang, et al. J. Coord. Chem., 2014, 67, 3054.CrossRefGoogle Scholar
  4. 4.
    H. L. Wu, Y. C. Bai, Y. H. Zhang, et al. Z. Anorg. Allg. Chem., 2014, 640, 2062.CrossRefGoogle Scholar
  5. 5.
    H. L. Wu, G. L. Pan, Y. C. Bai, et al. J. Photochem. Photobiol. B, 2014, 135,33.CrossRefGoogle Scholar
  6. 6.
    H. L. Wu, G. L. Pan, Y. C. Bai, et al. J. Chem. Res., 2014, 38,211.CrossRefGoogle Scholar
  7. 7.
    C. Y. Chen, J. W. Zhang, Y. H. Zhang, et al. J. Coord. Chem., 2015, 68, 1054.CrossRefGoogle Scholar
  8. 8.
    X. Q. Song, P. P. Liu, Y. A. Liu, et al. Dalton Trans., 2016, 45, 8154.CrossRefGoogle Scholar
  9. 9.
    Y. A. Liu, C. Y. Wang, M. Zhang, et al. Polyhedron, 2017, 127,278.CrossRefGoogle Scholar
  10. 10.
    P. P. Liu, C. Y. Wang, M. Zhang, et al. Polyhedron, 2017, 129,133.CrossRefGoogle Scholar
  11. 11.
    L. Q. Chai, K. Y. Zhang, L. J. Tang, et al. Polyhedron, 2017, 130,100.CrossRefGoogle Scholar
  12. 12.
    L. Zhao, X. T. Dang, Q. Chen, et al. Synth. React. Inorg. Met-Org. Nano-Met. Chem., 2013, 43, 1241.CrossRefGoogle Scholar
  13. 13.
    Y. X. Sun, L. Wang, X. Y. Dong, et al. Synth. React. Inorg. Met-Org. Nano-Met. Chem., 2013, 43,599.CrossRefGoogle Scholar
  14. 14.
    X. Q. Song, Y. J. Peng, G. Q. Chen, et al. Inorg. Chem. Acta, 2015, 427,13.CrossRefGoogle Scholar
  15. 15.
    H. L. Wu, G. L. Pan, Y. C. Bai, et al. Res. Chem. Intermed., 2015, 41, 3375.CrossRefGoogle Scholar
  16. 16.
    P. P. Liu, L. Sheng, X. Q. Song, et al. Inorg. Chem. Acta, 2015, 434,252.CrossRefGoogle Scholar
  17. 17.
    W. K. Dong, J. C. Ma, L. C. Zhu, et al. New J. Chem., 2016, 40, 6698.Google Scholar
  18. 18.
    P. Wang and L. Zhao. Spectrochim. Acta Part A, 2015, 135,342.CrossRefGoogle Scholar
  19. 19.
    Y. X. Sun and X. H. Gao. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2011, 41,973.CrossRefGoogle Scholar
  20. 20.
    L. Chen, W. K. Dong, H. Zhang, et al. Cryst. Growth Des., 2017, 17, 3636.CrossRefGoogle Scholar
  21. 21.
    S. D. Bella and I. Fragalà. Synth. Met., 2000, 115,191.CrossRefGoogle Scholar
  22. 22.
    W. K. Dong, J. C. Ma, L. C. Zhu, et al. Cryst. Growth Des., 2017, 16, 6903.CrossRefGoogle Scholar
  23. 23.
    W. K. Dong, J. C. Ma, Y. J. Dong, et al. Polyhedron, 2016, 115,228.CrossRefGoogle Scholar
  24. 24.
    H. L. Wu, C. P. Wang, F. Wang, et al. J. Chin. Chem. Soc., 2016, 62, 1028.CrossRefGoogle Scholar
  25. 25.
    J. Welby, L. N. Rusere, J. M. Tanski, et al. Inorg. Chem. Acta, 2009, 362, 1405.CrossRefGoogle Scholar
  26. 26.
    S. Akine, T. Taniguchi, and T. Nabeshima. Angew. Chem., 2001, 114, 4864.CrossRefGoogle Scholar
  27. 27.
    S. Akine, T. Taniguchi, W. K. Dong, et al. J. Org. Chem., 2005, 70, 1704.CrossRefGoogle Scholar
  28. 28.
    S. Akine, W. K. Dong, and T. Nabeshima. Inorg. Chem., 2006, 45, 4677.CrossRefGoogle Scholar
  29. 29.
    S. Akine, T. Taniguchi, and T. Nabeshima. Chem. Lett., 2006, 35,604.CrossRefGoogle Scholar
  30. 30.
    D. W. Dixon and R. H. Weiss. J. Org. Chem., 1984, 49, 4487.CrossRefGoogle Scholar
  31. 31.
    W. K. Dong, Y. X. Sun, C. Y. Zhao, et al. Polyhedron, 2010, 29, 2087.CrossRefGoogle Scholar
  32. 32.
    W. K. Dong, X. L. Li, L. Wang, et al. Sens. Actuators B, 2016, 229,370.CrossRefGoogle Scholar
  33. 33.
    S. S. Zheng, W. K. Dong, Y. Zhang, et al. New J. Chem., 2017, 41, 4966.CrossRefGoogle Scholar
  34. 34.
    B. J. Wang, W. K. Dong, Y. Zhang, et al. Sens. Actuators B, 2017, 247,254.CrossRefGoogle Scholar
  35. 35.
    W. K. Dong, J. T. Zhang, Y. J. Dong, et al. Z. Anorg. Allg. Chem., 2016, 642,189.CrossRefGoogle Scholar
  36. 36.
    W. K. Dong, W. Du, X. Y. Zhang, et al. Spectrochim. Acta Part A, 2014, 132,588.CrossRefGoogle Scholar
  37. 37.
    Y. J. Dong, X. Y. Dong, W. K. Dong, et al. Polyhedron, 2017, 123,305.CrossRefGoogle Scholar
  38. 38.
    W. K. Dong, P. F. Lan, W. M. Zhou, et al. J. Coord. Chem., 2016, 69, 1272.CrossRefGoogle Scholar
  39. 39.
    X. Y. Dong, Q. P. Kang, B. X. Jin, et al. Z. Naturforsch. B, 2017, 72,415.CrossRefGoogle Scholar
  40. 40.
    G. J. Kim and J. H. Shin. Catal. Lett., 1999, 63,83.CrossRefGoogle Scholar
  41. 41.
    P. Wang and L. Zhao. Synth. React. Inorg. Met-Org. Nano-Met. Chem., 2016, 46, 1095.CrossRefGoogle Scholar
  42. 42.
    W. K. Dong, J. G. Duan, Y. H. Guan, et al. Inorg. Chem. Acta, 2009, 362, 1129.CrossRefGoogle Scholar
  43. 43.
    J. C. Ma, X. Y. Dong, W. K. Dong, et al. J. Coord. Chem., 2016, 69,149.CrossRefGoogle Scholar
  44. 44.
    W. K. Dong, L. C. Zhu, J. C. Ma, et al. Inorg. Chim. Acta, 2016, 453,402.CrossRefGoogle Scholar
  45. 45.
    X. Q. Song, G. Q. Cheng, and Y. A. Liu. Inorg. Chim. Acta, 2016, 450,386.CrossRefGoogle Scholar
  46. 46.
    L. Xu, L. C. Zhu, J. C. Ma, et al. Z. Anorg. Allg. Chem., 2015, 641, 2520.CrossRefGoogle Scholar
  47. 47.
    L. Q. Chai, J. J. Huang, J. Y. Zhang, et al. J. Coord. Chem., 2015, 68, 1224.CrossRefGoogle Scholar
  48. 48.
    L. Q. Chai, G. Liu, Y. L. Zhang, et al. J. Coord. Chem., 2013, 66, 3926.CrossRefGoogle Scholar
  49. 49.
    W. K. Dong, X. Y. Zhang, Y. X. Sun, et al. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45,956.CrossRefGoogle Scholar
  50. 50.
    P. Wang and L. Zhao. Asian J. Chem., 2015, 4, 1424.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. Zhang
    • 1
  • L.-Z. Liu
    • 1
  • L. Gao
    • 1
  • S.-F. Akogun
    • 1
  • W.-K. Dong
    • 1
    Email author
  1. 1.School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhouP.R. China

Personalised recommendations