Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1619–1623 | Cite as

Asymmetric Oxygen Bridged Copper(II) Carboxylate: Synthesis, Complete Characterization, and Crystal Structure

  • M. IqbalEmail author
  • S. Ali
  • M. N. Tahir
Article
  • 10 Downloads

Abstract

Binuclear centrosymmetric copper(II) complex of the formula bipyCu(L)4Cubipy, where bipy = 2,2′- bipyridine and L = 4-methoxy-2-phenyl acetate, is synthesized and characterized by FT-IR, UV-Visible, ESR and mass spectroscopy, electrochemical, thermogravimetric, and single crystal XRD techniques. The complex contains two differently oriented molecules per unit cell stabilized via intermolecular interactions. Geometry around each Cu(II) was found to be square pyramidal affected by asymmetrically bridging oxygen atoms occupying the apical position of one square pyramid and the axial position of another in the same binuclear molecule. The square base is formed by two oxygen atoms from two carboxylate ligands and two nitrogen atoms from the bipyridine moiety. TGA shows that the complex is stable up to 170 °C followed by stepwise loss of coordinated ligands, which was supported by GC-MS data as well. A broad absorption spectrum indicated 2B1g as the ground state and single electron occupancy of the dx2y2 orbital, which was confirmed by the ESR spectrum. The electrochemical study gives two oxidation curves corresponding to Cu(II)/Cu(III) and Cu(I)/Cu(II) and a reduction signal corresponding to the Cu(II)/Cu(I) process. The robust complex represents an interesting contribution to the understanding of coordination chemistry.

Keywords

bridged copper(II) complex characterization structural description 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_1040_MOESM1_ESM.pdf (125 kb)
SUPPLEMENTARY MATERIALS TO: ASYMMETRIC OXYGEN BRIDGED COPPER(II) CARBOXYLATE: SYNTHESIS, COMPLETE CHARACTERIZATION, AND CRYSTAL STRUCTURE

References

  1. 1.
    R. P. Sharma, A. Saini, J. Kumar, et al. Inorg. Chim. Acta, 2017, 457, 59–68.CrossRefGoogle Scholar
  2. 2.
    I. Matulkova, J. Cihelka, K. Fejfarova, et al. CrystEngComm, 2011, 13, 4131–4138.CrossRefGoogle Scholar
  3. 3.
    J. P. Collman, R. A. Decreau, Y. Yan, et al. J. Am. Chem. Soc., 2007, 129, 5794/5795.CrossRefGoogle Scholar
  4. 4.
    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. J. Chem. Soc., Dalton Trans., 1984, 1349–1356.Google Scholar
  5. 5.
    B. K. Tripuramallu, S. Mukherjee, S. K. Das, et al. Cryst. Growth Des., 2012, 12, 79–97.CrossRefGoogle Scholar
  6. 6.
    N. Wannarit, C. Pakawatchai, I. Mutikainen, et al. Phys. Chem. Chem. Phys., 2013, 15, 1966–1975.CrossRefGoogle Scholar
  7. 7.
    F. Xu, T. Tao, K. Zhang, et al. Dalton Trans., 2013, 42, 3631–3645.CrossRefGoogle Scholar
  8. 8.
    M. R. P. Kurup, B. Varghese, M. Sithambaresan, et al. Polyhedron, 2011, 30, 70–78.CrossRefGoogle Scholar
  9. 9.
    O. Castillo, A. Luque, S. Iglisias, et al. Inorg. Chem. Commun., 2001, 4, 640–642.CrossRefGoogle Scholar
  10. 10.
    P. Phuengphai, S. Youngme, N. Chaichit, et al. Polyhedron, 2006, 25, 2198–2206.CrossRefGoogle Scholar
  11. 11.
    S. Majumder, M. Fleck, C. R. Lucas, et al. J. Mol. Struct., 2012, 1020, 127–133.CrossRefGoogle Scholar
  12. 12.
    G. S. Baghel, J. P. Chinta, A. Kaiba, et al. Cryst. Growth Des., 2012, 12, 91–96.CrossRefGoogle Scholar
  13. 13.
    C. H. Ng, K. C. Kong, S. T. Von, et al. Dalton Trans., 2008, 4, 447–454.CrossRefGoogle Scholar
  14. 14.
    V. Rajendiran, R. Karthik, M. Palaniandavar, et al. Inorg. Chem., 2007, 46, 8208–8221.CrossRefGoogle Scholar
  15. 15.
    S. Leconte, R. Ruzziconi, et al. J. Fluorine Chem., 2002, 117, 167–172.CrossRefGoogle Scholar
  16. 16.
    A. Hangan, A. Bodoki, L. Oprean, et al. Polyhedron, 2010, 29, 1305–1313.CrossRefGoogle Scholar
  17. 17.
    M. Iqbal, S. Ali, Z.-U. Rehman, et al. J. Coord. Chem., 2014, 67, 1731–1745.CrossRefGoogle Scholar
  18. 18.
    W. W. Sun, S. R. Li, H. Zhou, et al. Z. Anorg. Allg. Chem., 2010, 636, 1386–1391.CrossRefGoogle Scholar
  19. 19.
    M. A. Halcrow, L. M. L. Chia, X. Liu, et al. J. Chem. Soc., Dalton Trans., 1999, 1753–1762.Google Scholar
  20. 20.
    S. Naskar, S. Naskar, H. Mayer-Figge, et al. Polyhedron, 2012, 35, 77–86.CrossRefGoogle Scholar
  21. 21.
    I. Banerjee, P. N. Samanta, K. K. Das, et al. Dalton Trans., 2013, 42, 1879–1892.CrossRefGoogle Scholar
  22. 22.
    C. Diaz, J. Ribas, M. S. El Fallah, et al. Inorg. Chim. Acta, 2001, 312, 1–6.CrossRefGoogle Scholar
  23. 23.
    M. Mroueh, C. Daher, E. Hariri, et al. Chem. Biol. Interact., 2015, 231, 53–60.CrossRefGoogle Scholar
  24. 24.
    M. M. Ghoneim, A. Z. El-Sonbati, A. A. El-Bindary, et al. Spectrochim. Acta Mol. Biomol. Spectrosc., 2015, 140, 111–131.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryBacha Khan UniversityCharsadda, KPKPakistan
  2. 2.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Department of PhysicsUniversity of SargodhaSargodhaPakistan

Personalised recommendations