Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1572–1579 | Cite as

Ionic Mobility in Pb0.9M0.1F2.1 (M = Bi, In) and Pb0.9Bi0.05In0.05F2.1 Solid Solutions with the Fluorite-Type Structure According NMR Data

  • V. Ya. KavunEmail author
  • E. B. Merkulov
  • A. B. Slobodyuk
  • M. M. Polyantsev
  • O. V. Brovkina


Ionic mobility in solid solutions Pb0.9Bi0.1F2.1, Pb0.9In0.1F2.1, and Pb0.9Bi0.05In0.05F2.1 with the fluorite structure is studied with the 19F NMR method at 150–470 K. Temperature regions associated with local motions in the fluoride sublattice of these solid solutions are determined. The ratio of “fixed” (in the NMR scale) and mobile fluoride ions in the transition region (200-300 K) depends on the temperature, concentration of MF3 fluorides, and the nature of M3+ cations. Translational diffusion of fluoride ions is the predominant ionic motion in solid solutions above 300 K to cause high ionic conductivity in the samples.


solid solutions ionic mobility XRD 19F NMR spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Ivanov-Schits and I. V. Murin. Solid State Ionics. [in Russian] Vol. 1. St. Petersburg University Publ., St. Petersburg, 2000. Vol. 2. St. Petersburg University Publ., St. Petersburg, 2010.Google Scholar
  2. 2.
    M. A. Reddy and M. Fichtner. J. Mater. Chem., 2011, 21, 17059–17062.CrossRefGoogle Scholar
  3. 3.
    V. Trnovcová, P. P. Fedorov, and I. Furar. Russ. J. Electrochem., 2009, 45, 630–639.CrossRefGoogle Scholar
  4. 4.
    P. Berastegui and S. Hull. Solid State Ion., 2002, 154-155, 605–608.CrossRefGoogle Scholar
  5. 5.
    J. M. Réau and P. Hagenmuller. Rev. Inorg. Chem., 1999, 19, 45–77.CrossRefGoogle Scholar
  6. 6.
    Y. Ito, K. Koto, S. Yoshikado, and T. Ohachi. Solid State Ion., 1986, 18-19(Part 2), 1202–1207.CrossRefGoogle Scholar
  7. 7.
    I. I. Buchinskaya and P. P. Fedorov. Russ. Chem. Rev., 2004, 73, 371–400.CrossRefGoogle Scholar
  8. 8.
    S. Hull, P. Berastegui, S. G. Eriksson, and N. J. G. Gardner. J. Phys.: Condens. Matter, 1998, 10, 8429–8446.Google Scholar
  9. 9.
    V. Ya. Kavun, V. K. Goncharuk, A. B. Slobodyuk, and L. N. Alekseiko. Solid solutions and glasses based on lead(II) and bismuth(III) fluorides [in Russian]. Vladivostok. The Far East. Fed. un-ty. 2013.Google Scholar
  10. 10.
    V. M. Buznik, A. A. Sukhovskii, V. A. Vopilov, et al. Russ. J. Inorg. Chem., 1997, 42, 2092–2097.Google Scholar
  11. 11.
    P. Darbon, J.-M. Réau, and P. Hagenmuller. Mater. Res. Bull., 1981, 16, 273–277.CrossRefGoogle Scholar
  12. 12.
    V. Ya. Kavun, A. B. Slobodyuk, S. L. Sinebryukhov, et al. Russ. J. Electrochem., 2007, 43, 611–624.CrossRefGoogle Scholar
  13. 13.
    S. Hull and P. Berastegui. J. Phys.: Condens. Matter, 1999, 11, 5257–5272.Google Scholar
  14. 14.
    M. Wahbi, J. M. Réau, and J. Sénégas. Phys. Stat. Sol. (a) Appl. Res., 1991, 125, 517–527.CrossRefGoogle Scholar
  15. 15.
    S. P. Gabuda, Yu. V. Gagarinskiy, and S. A. Polishchuk. NMR in the Inorganic Fluorides [in Russian], Atomizdat Moscow, 1978.Google Scholar
  16. 16.
    A. G. Lundin and E. I. Fedin. NMR Spectroscopy [in Russian]. Nauka, Moscow, 1986.Google Scholar
  17. 17.
    V. Ya. Kavun, A. B. Slobodyuk, E. A. Tararako, et al. Inorg. Mater., 2005, 41, 1228–1235.CrossRefGoogle Scholar
  18. 18.
    V. Ya. Kavun, A. B. Slobodyuk, S. V. Gnedenkov, et al. J. Struct. Chem., 2007, 48, 840–847.CrossRefGoogle Scholar
  19. 19.
    S. K. Soo, J. Senegas, J. M. Réau, et al. J. Solid State Chem., 1993, 104, 215–225.CrossRefGoogle Scholar
  20. 20.
    P. Laborde, G. Villeneuve, J. M. Réau, and P. Hagenmuller. Z. Anorg. Allg. Chem., 1986, 537, 40–52.CrossRefGoogle Scholar
  21. 21.
    K. Suh, J. Sénégas, J. M. Réau, and P. Hagenmuller. J. Solid State Chem., 1991, 93, 469–484.CrossRefGoogle Scholar
  22. 22.
    Malika El Omari, E. Hafidi, M. El Omari, et al. Mater. Lett., 2002, 53, 138–144.CrossRefGoogle Scholar
  23. 23.
    V. Ya. Kavun, N. F. Uvarov, A. B. Slobodyuk, et al. J. Solid State Chem., 2017, 249, 204–209.CrossRefGoogle Scholar
  24. 24.
    M. El Omari, J. Sénégas, and J. M. Réau. Solid State Ion., 1997, 100, 233–240.CrossRefGoogle Scholar
  25. 25.
    M. El Omari, J. Sénégas, and J. M. Réau. Solid State Ion., 1997, 100, 241–246.CrossRefGoogle Scholar
  26. 26.
    M. El Omari, J. L. Soubeyroux, J. M. Réau, and J. Sénégas. Solid State Ion., 2000, 130, 133–141.CrossRefGoogle Scholar
  27. 27.
    S. K. Soo, J. Sénégas, J. M. Réau, et al. J. Solid State Chem., 1992, 97, 212–223.CrossRefGoogle Scholar
  28. 28.
    A. Lucat, J. M. Rhandour, J. M. Réau, et al. J. Solid State Chem., 1979, 29, 373–377.CrossRefGoogle Scholar
  29. 29.
    M. Kumar, K. Yamada, T. Okuda, and S. S. Sekhon. Phys. Stat. Sol. (b), 2003, 239, 432–438.CrossRefGoogle Scholar
  30. 30.
    A. Abragam. The principles of nuclear magnetism. Clarendon press, Oxford, 1961.Google Scholar
  31. 31.
    H. S. Gutowsky and G. E. Pake. J. Chem. Phys., 1950, 18, 162–170.CrossRefGoogle Scholar
  32. 32.
    J. M. Réau, S. Matar, S. Kacim, et al. Solid State Ion., 1982, 7, 165–170.CrossRefGoogle Scholar
  33. 33.
    M. Wahbi, J. M. Réau, and J. Sénégas. Mater. Lett., 1992, 13, 218–224.CrossRefGoogle Scholar
  34. 34.
    E. F. Hairetdinov, N. F. Uvarov, J.M. Réau, et al. Solid State Ion., 1994, 73, 93–98.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Ya. Kavun
    • 1
    Email author
  • E. B. Merkulov
    • 1
  • A. B. Slobodyuk
    • 1
  • M. M. Polyantsev
    • 1
  • O. V. Brovkina
    • 1
  1. 1.Institute of Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations