Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1555–1563 | Cite as

Molecular Docking and 3D QSAR Research of Indolocarbazole Series as Cyclin-Dependent Kinase Inhibitors

  • J. TongEmail author
  • G. Jiang
  • L. Li
  • Y. Li
Article
  • 9 Downloads

Abstract

Fifty indolocarbazole series as cyclin-dependent kinase inhibitors (CDKs) are used to establish a threedimensional quantitative structure-activity relationship (3D QSAR) model based on docking conformations resulting from the Topomer comparative molecular field analysis (Topomer CoMFA). The statistic parameters show that the cross-validation (q2), the multiple correlation coefficient of fitting (r2), and external validation statistic (Qext2) are 0.953, 0.968, and 0.954, respectively. It is demonstrated that this Topomer CoMFA model has good stability and prediction ability. The methodology of the fragment-based drug design (FBDD) was also used to virtually screen new CDKs by the Topomer Search technology. Four similar substitutional groups selected from the ZINC database were added to the basic scaffold. As a result, 18 new CDKs with high activities were obtained. The template molecule and new designed compounds are used to study the binding relationship between the ligands and the receptor protein with Surflex-Dock. The docking results suggest good binding interactions of the designed compounds with protein. There are several hydrogen bondings between CDKs with amino acid residues of LYS33, LYS89, ASP86, LEU83, GLU81.

Keywords

Topomer CoMFA Topomer search molecular docking CDKs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Rd and M. L. Vallana. Curr. Med. Chem., 2003, 10(5),367.Google Scholar
  2. 2.
    M. Prudhomme. Curr. Med. Chem., 2004, 4(5),435.Google Scholar
  3. 3.
    N. Y. Sun, T. Lu, and Y. D. Chen. Acta Phys., Chim. Sin., 2009, 25(4),645.Google Scholar
  4. 4.
    R. Gussio, D. W. Zaharevitz, C. F. McGrath, and N. Pattabiramman. Anti-Cancer Drug Des., 2000, 15,53.Google Scholar
  5. 5.
    N. Dessalew and P. V. Bharata. Mol. Inform., 2010, 26(1),85.Google Scholar
  6. 6.
    J. B. Ghasemi, M. Ayati, and S. H. Pirhadi. J. Iran. Chem. Res., 2011, 4,235.Google Scholar
  7. 7.
    Z. P. Ke, T. Lu, and H. C. Liu. J. Mol. Struct., 2014, 1067(1),127.Google Scholar
  8. 8.
    M. H. Dong, H. F. Chen, and Y. J. Ren. Bioorg. Med. Chem., 2015, 24(2),73.Google Scholar
  9. 9.
    R. M. Asath, T. N. Rekha, S. Premkumar, T. Mathavan, et al. J. Mol. Struct., 2016, 1125(5),633.Google Scholar
  10. 10.
    T. A. Engler and K. F. Novel. Chem. Inform., 2003, 13(14), 2261.Google Scholar
  11. 11.
    I. A. Doytchinova and D. R. Flower. J. Med. Chem., 2001, 44(22), 3572.Google Scholar
  12. 12.
    G. Tresaderna, J. M. Cidb, and A. A. Trabanco. J. Mol. Graph Model., 2014, 53,82.Google Scholar
  13. 13.
    V. C. Pham, J. C. Min, and T. W. Kim. Bull. Korea Chem. Soc., 2012, 31(1),305.Google Scholar
  14. 14.
    X. Y. Wu and W. H. Chen. Int. J. Mol. Sci., 2012, 13(2), 2387.Google Scholar
  15. 15.
    R. D. Cramer, P. Cruz, and G. Stahl. J. Chem. Inf. Model., 2008, 48(11), 2180.Google Scholar
  16. 16.
    R. J. Jilek and R. D. Cramer. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1221.Google Scholar
  17. 17.
    D. D. Huang, Y. L. Liu, B. Z. Shi, Y. T. Li, G. X. Wang, and G. Z. Liang. J. Mol. Graph. Model., 2013, 45(18),65.Google Scholar
  18. 18.
    Y. X. Tian, Y. D. Shen, X. Z. Zhang, L. B. Ye, and Z. H. Li. Mol. Inform., 2013, 33(8),536.Google Scholar
  19. 19.
    A. Singh, S. Goyal, S. Jamal, and B. Subramani. Struct. Chem., 2016, 27(3),993.Google Scholar
  20. 20.
    Y. Y. Lv, C. S. Yin, and H. Y. Liu. J. Environ Sci., 2008, 20(12), 1433.Google Scholar
  21. 21.
    X. L. Gao, D. H. Liu, and Z. Wang. J. Tribol., 2008, 138(3).Google Scholar
  22. 22.
    J. B. Bhonsle, V. Divakaramenon, and D. P. Huddler. J. Med. Chem., 2008, 50(26), 6545.Google Scholar
  23. 23.
    P. P. Roy, J. T. Leonard, and K. Roy. Intell. Lab., 2008, 90(1),31.Google Scholar
  24. 24.
    J. B. Tong, M. Bai, and X. Zhao. Med. Chem. Res., 2016, 25(11), 2619.Google Scholar
  25. 25.
    Y. H. Xiang, J. Song, and Z. Y. Zhang. Comb. Chem. High Throughput Screening, 2014, 17(5),458.Google Scholar
  26. 26.
    J. B. Tong, P. Zhan, M. Bai, and T. L. Yao. J. Chemom., 2016, 30(9),523.Google Scholar
  27. 27.
    C. Xu and Y. J. Ren. Bioorg. Med. Chem. Lett., 2015, 25(20), 4522.Google Scholar
  28. 28.
    X. Q. Yan, Z. C. Wang, Z. Li, and P. F. Wang. Med. Chem. Lett., 2015, 25(20), 4664.Google Scholar
  29. 29.
    M. M. Ghorab, F. A. Ragab, and H. I. Heiba. Eur. J. Med. Chem., 2016, 117(19), 8.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi′anP. R. China

Personalised recommendations