Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 739–743 | Cite as

Effect of Morphological ZnO Nanostructures on the Optical and Decolorization Properties

  • A. Anaraki Firooz
  • R. Abdullah Mirzaie
  • F. Kamrani
Article
  • 15 Downloads

Abstract

ZnO photocatalysts with various morphologies (nanorod-like, nanosheet-like, and a mixture of rods and particles) are successfully prepared via simple solid states reactions at room temperature and 300 °C. The samples are characterized and used for photodecolorization of Congo red. It is found that there is a close relationship between photodecolorization, morphology, and size. The optical band gap value of nanorodlike ZnO is calculated to be about 4.0 eV. This value exhibits a nearly 0.7-0.9 eV blue shift from that of nanosheet-like ZnO and a mixture of ZnO rods and particles, which is related to a decrease in the size of particles and the achievement of the quantum confinement limit of nanoparticles. Also, nanorod-like ZnO shows higher decolorization in visible light as compared with other photocatalysts. It may be attributed to the special morphology (nanorod-like) with a smaller crystallite size. Nanorod-like ZnO could be considered as a promising photocatalyst for dye treatment.

Keywords

ZnO photodecolorization morphology optical solid state reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Firooz, A. R. Mahjoub, A. A. Khodadadi, and M. Movahedi. Chem. Eng. J., 2010, 165, 735–739.CrossRefGoogle Scholar
  2. 2.
    J. Gao, X. Luan, J. Wang, B. Wang, K. Li, Y. Li, P. Kang, and G. Han. Desalination, 2011, 268, 68–75.CrossRefGoogle Scholar
  3. 3.
    J. Wang, Y. Xia, Y. Dong, R. Chen, L. Xiang, and S. Komarneni. Appl. Catal. B, 2016, 192, 8–16.CrossRefGoogle Scholar
  4. 4.
    W. Lu, G. Liu, S. Gao, S. Xing, and J. Wang. Nanotechnology, 2008, 19, 445711.CrossRefPubMedGoogle Scholar
  5. 5.
    M. Sabbaghan, A. A. Firooz, and V. J. Ahmadi. J. Mol. Liq., 2012, 175, 135–140.CrossRefGoogle Scholar
  6. 6.
    R. Kumar, A. Umar, G. Kumar, M. S. Akhtar, Y. Wang, and S. H. Kim. Ceram. Inter., 2015, 41, 7773–7782.CrossRefGoogle Scholar
  7. 7.
    X. Zhao, M. Li, and X. Lou. Adv. Powd. Technol., 2014, 25, 372–378.CrossRefGoogle Scholar
  8. 8.
    Y. H. Xiao, L. Li, Y. Li, M. Fang, and L. D. Zhang. Nanotechnology, 2005, 16, 671–674.CrossRefGoogle Scholar
  9. 9.
    C.-Y. Chen, J.-C. Weng, J.-H. Chen, S.-H. Ma, K.-H. Chen, T.-L. Horng, C.-Y. Tsay, C.-J. Chang, C.-K. Lin, and J. J. Wu. Powd. Technol., 2015, 272, 316–321.CrossRefGoogle Scholar
  10. 10.
    R. A. Mirzaie, F. Kamrani, A. A. Firooz, and A. A. Khodadadi. Mat. Chem. Phys., 2012, 133, 311–316.CrossRefGoogle Scholar
  11. 11.
    R. A. Mirzaie, A. A. Firooz, F. Kamrani, and A. A. Khodadadi. Solid State Sci., 2013, 26, 9–15.CrossRefGoogle Scholar
  12. 12.
    M. Sabbaghan, A. A. Firooz, and V. J. Ahmadi. J. Mol. Liq., 2012, 175, 135–140.CrossRefGoogle Scholar
  13. 13.
    Y. Zhu and Y. Zhou. Appl. Phys. A, 2008, 92, 275–278.CrossRefGoogle Scholar
  14. 14.
    J.-H. Sun, S.-Y. Dong, Y.-K. Wang, and S.-P. Sun. J. Hazard. Mater., 2009, 172, 1520–1526.CrossRefPubMedGoogle Scholar
  15. 15.
    J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong. Sol. Energy Mater. Sol. Cells, 2006, 90, 1773–1787.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Anaraki Firooz
    • 1
  • R. Abdullah Mirzaie
    • 1
  • F. Kamrani
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations