Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 711–719 | Cite as

Formation Reaction and Chemical Structure of a Novel Supramolecular Triad Based on Cobalt(II) 5,10,15,20-(Tetra-4-Tert-Butylphenyl)-21Н,23Н-Porphyrin and 1-Methyl-2-(Pyridin-4′-Yl)- 3,4-Fullero[60]Pyrrolidine

  • N. G. Bichan
  • E. N. Ovchenkova
  • M. S. Gruzdev
  • T. N. Lomova
Article

Abstract

Results of chemical kinetic/thermodynamic and spectroscopic studies of the reaction of cobalt(II) 5,10,15,20-(tetra-4-tert-butylphenyl)-21Н,23Н-porphyrin (CoIITBPP) with 1-methyl-2-(pyridin-4′-yl)-3,4- fullero[60]pyrrolidine (PyF) in toluene at 298 K, ending by the formation of donor-acceptor triad (PyF)2CoIITBPP, are presented. Kinetic and thermodynamic parameters of the two-way formation reaction of the triad are obtained. The chemical structure of the obtained porphyrin-fullerene triad is identified by UV, visible, fluorescent, IR, and 1H NMR spectroscopic techniques. The results are relevant for the problems of searching for supramolecular systems capable of photoinduced charge separation.

Keywords

substituted cobalt(II) porphyrin pyrrolidinofullerene donor-acceptor triad kinetics of formation thermodynamics of formation spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Trukhina, M. Rudolf, G. Bottari, T. Akasaka, et al. J. Am. Chem., 2015, 137, 12914.CrossRefGoogle Scholar
  2. 2.
    B. K. C. Chandra and F. D'Souza. Coord. Chem. Rev., 2016, 322,104.CrossRefGoogle Scholar
  3. 3.
    B. M. Illescas and N. Martín. C. R. Chim., 2006, 97, 1038.CrossRefGoogle Scholar
  4. 4.
    R. M. Williams, M. Koeberg, J. M. Lawson, Y. Z. An, et al. J. Org. Chem., 1996, 61, 5055.CrossRefGoogle Scholar
  5. 5.
    D. M. Guldi. Chem. Soc. Rev., 2002, 31,22.CrossRefPubMedGoogle Scholar
  6. 6.
    A. R. Waterloo, R. Lippert, N. Jux, and R. R. Tykwinski. J. Coord. Chem., 2015, 68, 3088.CrossRefGoogle Scholar
  7. 7.
    I. W. Hwang, T. Kamada, T. K. Ahn, D. M. Ko, et al. J. Am. Chem. Soc., 2004, 126, 16187.CrossRefPubMedGoogle Scholar
  8. 8.
    S. Fukuzumi, K. Saito, K. Ohkubo, V. Troiani, et al. Phys. Chem. Chem. Phys., 2011, 13, 17019.CrossRefPubMedGoogle Scholar
  9. 9.
    S. A. Ikbal, S. Brahma, and S. P. Rath. Inorg. Chem., 2012, 51, 9666.CrossRefPubMedGoogle Scholar
  10. 10.
    F. Fages, J. A. Wytko, and J. Weiss. C. R. Chim., 2008, 11, 1241.CrossRefGoogle Scholar
  11. 11.
    S. Brahma, S. A. Ikbal, and S. P. Rath. Inorg. Chim. Acta, 2011, 372,62.CrossRefGoogle Scholar
  12. 12.
    E. V. Motorina, T. N. Lomova, P. A. Troshin, and M. V. Klyuev. Rus. J. Gen. Chem., 2014, 84(5),946.CrossRefGoogle Scholar
  13. 13.
    N. G. Bichan, E. N. Ovchenkova, N. O. Kudryakova, and T. N. Lomova. J. Coord. Chem., 2017, 70, 2371.CrossRefGoogle Scholar
  14. 14.
    A. Adler. Note., 1966, 32,476.Google Scholar
  15. 15.
    M. Prato, M. Maggini, C. Giacometti, G. Scorrano, et al. Tetrahedron., 1996, 52, 5221.CrossRefGoogle Scholar
  16. 16.
    P. A. Troshin, S. I. Troyanov, G. N. Boiko, R. N. Lyubovskaya, et al. Fullerenes, Nanotubes, Carbon Nanostruct., 2004, 12,413.CrossRefGoogle Scholar
  17. 17.
    N. V. Chizhova, R. S. Kumeev, and N. Z. Mamardashvili. Rus. J. Inorg. Chem., 2013, 58(6),740.CrossRefGoogle Scholar
  18. 18.
    B. B. Ali, M. S. Belkhiria, M. Giorgi, and H. Nasri. Open J. Inorg. Chem., 2011, 1,39.CrossRefGoogle Scholar
  19. 19.
    S. V. Zaitseva, S. A. Zdanovich, and O. I. Koifmana. Makrogeterotsicly, 2012, 5,81.Google Scholar
  20. 20.
    Y. Terazono, B. O. Patrick, and D. H. Dolphin. Inorg. Chim. Acta, 2003, 346,265.CrossRefGoogle Scholar
  21. 21.
    M. A. Fodor, O. Horvátha, L. Fodor, G. Grampp, et al. Inorg. Chem. Com., 2014, 50,110.CrossRefGoogle Scholar
  22. 22.
    M. Gouterman. J. Chem. Phys., 1959, 30, 1139.CrossRefGoogle Scholar
  23. 23.
    J. Macka, M. J. Stillman, and N. Kobayashi. Coord. Chem. Rev., 2007, 251,429.CrossRefGoogle Scholar
  24. 24.
    M. C. Martin, X. Du, and L. Mihaly. Phys. Rev. B, 1994, 50,173.CrossRefGoogle Scholar
  25. 25.
    K. Nakanishi. Infrared Absorption Spectroscopy. Holden-Day, San Francisco and Nankodo Company Limited. Tokyo: 1962.Google Scholar
  26. 26.
    L. Sacconi, A. Sabatini, P. Gans, L. Sacconi, et al. Inorg. Chem., 1964, 3, 1772.CrossRefGoogle Scholar
  27. 27.
    R. Koeppe, P. A. Troshin, A. Fuchsbauer, R. N. Lyubovskaya, et al. Fullerenes, Nanotubes, Carbon Nanostruct., 2006, 14,441.CrossRefGoogle Scholar
  28. 28.
    F. D'Souza and O. Ito. Chem. Commun., 2009, 33, 4913.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Bichan
    • 1
  • E. N. Ovchenkova
    • 1
  • M. S. Gruzdev
    • 1
  • T. N. Lomova
    • 1
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations