Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 689–696 | Cite as

Molecular and Crystal Structure of 2-Amino-Polyfluorophenyl-4,4,5,5-Tetramethyl-4,5-Dihydro-1H-Imidazol- 3-Oxide-1-Oxyls

  • E. V. Tretyakov
  • T. V. Makhneva
  • L. V. Politanskaya
  • I. Yu. Bagryanskaya
  • D. V. Stass
Article
  • 21 Downloads

Abstract

By cross-coupling of 2-iodo-polyfluoroanilines with a [AuPPh3NN] complex (where NN is 4,4,5,5- tetramethyl-3-oxide-1-oxyl-2-imidazolin-2-ide) in the presence of [Pd(PPh3)4], nitroxide radicals (2-aminopolyfluorophenyl- 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyls) are synthesized. Their molecular and crystal structures are determined by the X-ray crystallographic analysis. It is shown that in the solid phase there are both intra- and intermolecular hydrogen bonds between NH2 groups and O atoms of paramagnetic fragments, which link the molecules into chains or dimers.

Keywords

nitronyl nitroxides polyfluorine compounds anilines hydrogen bonds crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science / Eds. G. I. Likhtenshtein, J. Yamauchi, S. Nakatsuji, A. I. Smirnov and R. Tamura. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2008.Google Scholar
  2. 2.
    A. Alberti. Nitroxide Radicals and Nitroxide Based High-Spin Systems. Molecules and Radicals, Landolt-Boernstein Series, vol. 26D. Berlin, Heidelberg: Springer-Verlag, 2005.Google Scholar
  3. 3.
    Nitroxides–theory, experiment and applications / Ed. A. I. Kokorin. Rijeka, Croatia: In Tech, 2012.Google Scholar
  4. 4.
    Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. R. G. Hicks. Chichester. UK: John Wiley and Sons, 2010.Google Scholar
  5. 5.
    S. Rowen. Concepts and Applied Principles of Nitroxides. NY: Research Press, 2015.Google Scholar
  6. 6.
    M. Baumgarten. High Spin Molecules Directed Towards Molecular Magnets. Chapter 12. In: EPR of Free Radicals in Solids II. Progress in Theoretical Chemistry and Physics, vol. 25. / Eds. A. Lund and M. Shiotani. Dordrecht: Springer, 2012.Google Scholar
  7. 7.
    Chemical Science of p-Electron Systems / Eds. T. Akasaka, A. Osuka, S. Fukuzumi, H. Kandori and Y. Aso. Japan: Publisher Springer, 2015.Google Scholar
  8. 8.
    Molecular magnetism / Eds. K. Itoh and M. Kinoshita. Tokyo: Kodansha & Gordon and Breach, 2000.Google Scholar
  9. 9.
    E. V. Tretyakov and V. I. Ovcharenko. Russ. Chem. Rev., 2009, 78, 971–1012.CrossRefGoogle Scholar
  10. 10.
    I. Ratera and J. Veciana. Chem. Soc. Rev., 2012, 41, 303–349.CrossRefPubMedGoogle Scholar
  11. 11.
    K. Inoue. Metal-Aminoxyl-Based Molecular Magnets. In: p-Electron Magnetism. Structure and Bonding, vol. 100 / Ed. J. Veciana. Berlin, Heidelberg: Springer, 2001, 61–91.Google Scholar
  12. 12.
    E. Tretyakov, S. Tolstikov, A. Suvorova, A. Polushkin, G. Romanenko, A. Bogomyakov, S. Veber, M. Fedin, D. Stass, E. Reijerse, W. Lubitz, E. Zueva, and V. Ovcharenko. Inorg. Chem., 2012, 51, 9385–9394.CrossRefPubMedGoogle Scholar
  13. 13.
    W. Kaszub, A. Marino, M. Lorenc, E. Collet, E. G. Bagryanskaya, E. V. Tretyakov, V. I. Ovcharenko, and M. V. Fedin. Angew. Chem., Intern. Ed., 2014, 53, 10636–10640.CrossRefGoogle Scholar
  14. 14.
    M. V. Fedin, S. L. Veber, E. G. Bagryanskaya, and V. I. Ovcharenko. Coord. Chem. Rev., 2015, 289-290, 341–356.CrossRefGoogle Scholar
  15. 15.
    K. Doi, T. Ishida, and T. Nogami. Chem. Lett., 2003, 32, 544/545.CrossRefGoogle Scholar
  16. 16.
    Patent WO 2006/82400A1.Google Scholar
  17. 17.
    L. Politanskaya and E. Tretyakov. Synthesis, 2018, 50, 555–564.CrossRefGoogle Scholar
  18. 18.
    L. Yu. Safina, G. A. Selivanova, K. Yu. Koltunov, and V. D. Shteingarts. Tetrahedron Lett., 2009, 50, 5245–5247.CrossRefGoogle Scholar
  19. 19.
    L. V. Politanskaya, I. P. Chuikov, E. A. Kolodina, M. S. Shvartsberg, and V. D. Shteingarts. J. Fluor. Chem., 2012, 135, 97–107.CrossRefGoogle Scholar
  20. 20.
    R. Tanimoto, S. Suzuki, M. Kozaki, and K. Okada. Chem. Lett., 2014, 43, 678–680.CrossRefGoogle Scholar
  21. 21.
    G. M. Sheldrick. SHELX-97. Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany, 1997.Google Scholar
  22. 22.
    Bruker AXS Inc. SADABS (Version 2.11). Madison, Wisconsin, USA, 2008.Google Scholar
  23. 23.
    A. L. Spek. PLATON–A Multipurpose Crystallographic Tool (Version 10M). Utrecht University, Utrecht, The Netherlands, 2003.Google Scholar
  24. 24.
    A. L. Spek. J. Appl. Crystallogr., 2003, 36, 7–13.CrossRefGoogle Scholar
  25. 25.
    C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van de Stree. J. Appl. Crystallogr., 2006, 39, 453–457.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Tretyakov
    • 1
    • 2
  • T. V. Makhneva
    • 1
    • 2
  • L. V. Politanskaya
    • 1
  • I. Yu. Bagryanskaya
    • 1
    • 2
  • D. V. Stass
    • 2
    • 3
  1. 1.Vorozhtsov Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations