Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 657–663 | Cite as

Jahn–Teller Effect in the [CuEn3]CrO4 Structure

  • A. S. Sukhikh
  • S. P. Khranenko
  • D. P. Pishchur
  • S. A. Gromilov
Article
  • 14 Downloads

Abstract

A change in the coordination of the copper atom in the crystal structure of [CuEn3]CrO4 (En is ethylenediamine) in studied in the range 150–300 K. According to the single crystal X-ray diffraction (XRD) data at 150 K, the single crystal has a complicated twining character based on the triclinic cell (a = 9.027(2) Å, b = 13.335(3) Å, c = 13.339(3) Å, α = 71.77(3)°, β = 70.53(3)°, γ = 70.42(3)°) composed of two crystallographically independent [CuEn3]2+ complex cations. The coordination of copper atoms is a distorted square bipyramid; four short Cu–N distances lie in the range 2.049-2.082 Å; two long ones are 2.415 Å and 2.470 Å. According to the differential scanning calorimetry (DSC) data, near 218 K there is a phase transition. The single crystal XRD experiment performed at 250 K (a = 15.6992(19) Å, c = 9.7573(13) Å, V = 2082.6(6) Å3, space group P\(\bar 3\)c1 (No. 165), Z = 6) shows that chromate anions are disordered over three positions about the с axis, and Cu–N distances are 2.120-2.177 Å. According to the DSC data, on further heating the structure undergoes yet another two alterations (260 K and 270 K) due to the disordering of oxygen atoms of chromate anions and the subsequent equalization of Cu–N distances. At 300 K in the structure (a = 9.0778(6) Å, c = 9.7715(5) Å, V = 697.4 Å3, space group P\(\bar 3\)c (No. 163), Z = 2) all Cu–N distances are 2.155 Å, and chromate anions are disordered over six positions about the с axis. A comparative crystal chemical analysis of the packing of the studied structures is carried out.

Keywords

comple salt copper tris-ethylenediamine chromate anion differential scanning calorimetry single crystal X-ray diffraction analysis crystal chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Gordon and R. K. Birdwhistell. J. Amer. Chem. Soc., 1959, 81, 3567–3569.CrossRefGoogle Scholar
  2. 2.
    I. Bertini and D. Gatteschi. Inorg. Nucl. Chem. Lett., 1972, 8,207.CrossRefGoogle Scholar
  3. 3.
    I. Bertini, D. Gatteschi, and A. Scozzafava. Inorg. Chim. Acta, 1974, 61, L17.CrossRefGoogle Scholar
  4. 4.
    I. Bertini, P. Dapporto, D. Gatteschi, and A. Scozzafava. J. Chem. Soc., Dalton Trans., 1979, 1409–1414.Google Scholar
  5. 5.
    M. Lutz. Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2010, 66(11), m330–m335.CrossRefGoogle Scholar
  6. 6.
    I. Bertini, D. Gatteschi, and A. Scozzafava. Inorg. Chem., 1977, 66, 1973–1976.CrossRefGoogle Scholar
  7. 7.
    S. Smeets, P. Parois, H.-B. Burgi, and M. Lutz. Acta Crystallogr. Sect. B: Struct. Sci., 2011, 67, 53–62.CrossRefGoogle Scholar
  8. 8.
    N. V. Arkhipenko and S. M. Kiiko. Zh. Fiz. Khim., 2005, 79(2), 374–376.Google Scholar
  9. 9.
    A. M. A. Bennet, G. A. Foulds, D. A. Thornton, et al. Spectrochim. Acta, 1990, 46A(1), 13–22.CrossRefGoogle Scholar
  10. 10.
    W. Kraus and G. Nolze. J. Appl. Crystallogr., 1996, 29, 301/302.CrossRefGoogle Scholar
  11. 11.
    A. S. Sukhikh, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2018, 59(2), 395–397.CrossRefGoogle Scholar
  12. 12.
    F. H. Allen. Acta Crystallogr., 2002, B58(3-1), 380–388.CrossRefGoogle Scholar
  13. 13.
    A. V. Panchenko, N. D. Tolstykh, and S. A. Gromilov. J. Struct. Chem., 2014, 55, Suppl.(1), S24–S29.Google Scholar
  14. 14.
    Bruker AXS Inc. APEX2 V2013.6-2, SAINT V8.32B and SADABS-2012/1. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
  15. 15.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339–341.CrossRefGoogle Scholar
  16. 16.
    G. M. Sheldrick. Acta Crystallogr., 2015, A71, 3–8.Google Scholar
  17. 17.
    G. M. Sheldrick. Acta Crystallogr., 2015, C71, 3–8.Google Scholar
  18. 18.
    S. V. Borisov. J. Struct. Chem., 1986, 27(3), 486–488.CrossRefGoogle Scholar
  19. 19.
    E. A. Bykova, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2012, 53(1), 138–144.CrossRefGoogle Scholar
  20. 20.
    S. P. Khranenko, E. A. Bykova, A. V. Alekseev, and S. A. Gromilov. J. Struct. Chem., 2012, 53(3), 514–520.CrossRefGoogle Scholar
  21. 21.
    N. V. Kuratieva, I. O. Tereshkin, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2013, 54(6), 1133–1136.CrossRefGoogle Scholar
  22. 22.
    S. P. Khranenko, N. V. Kuratieva, and S. A. Gromilov. J. Struct. Chem., 2015, 56(2), 352–356.CrossRefGoogle Scholar
  23. 23.
    V. A. Afanas`eva, L. A. Glinskaya, D. A. Piryazev, and S. A. Gromilov. J. Struct. Chem., 2015, 56(4), 787–791.CrossRefGoogle Scholar
  24. 24.
    S. A. Gromilov, E. A. Bykova, and S. V. Borisov. Kristallografiya, 2011, 56(6), 1013–1018.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Sukhikh
    • 1
    • 2
  • S. P. Khranenko
    • 1
  • D. P. Pishchur
    • 1
  • S. A. Gromilov
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations