Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 646–651 | Cite as

Crystal Structure and Properties of Levofloxacinium 2-Thiobarbiturate Trihydrate

  • N. N. Golovnev
  • M. S. Molokeev
  • M. K. Lesnikov
Article
  • 4 Downloads

Abstract

The structure of levofloxacinium 2-thiobarbiturate trihydrate LevoH 2 + Htba·3H2O (I) (LevoH is levofloxacin, H2tba is 2-thiobarbituric acid) is determined (CIF file CCDC No. 1547466); its thermal decomposition and IR spectrum are studied. The crystals of I are triclinic: a = 8.670(1) Å, b = 9.605(1) Å, c = 15.786(2) Å, α = 89.144(5)°, β = 88.279(5)°, γ = 76.068(5)°, V = 1275.4(3) Å3, space group P1, Z = 2. The unit cell of I contains two LevoH 2 + ions, two Htba ions, and six H2O molecules. The absolute structure of the crystal and the configuration of the chiral center in a levofloxacin molecule S are determined. Experiments for generating the second optical harmonics gave a positive result. Intermolecular hydrogen bonds (HBs) N–H···O and O–H···O in I form a bilayer system along the ab diagonal with hydrophilic moieties within a layer and hydrophobic moieties directed outward. The structure is stabilized by multiple HBs and the π–π interaction between the Htba–and LevoH 2 + ions and between the LevoH 2 + ions.

Keywords

levofloxacin 2-thiobarbituric acid salt crystal structure absolute structure thermal stability IR spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Mitsher. Chem. Rev., 2005, 105(2), 559–585.CrossRefGoogle Scholar
  2. 2.
    E. N. Padeiskaya. Prevention, Diagnostics, Pharmacotherapy of Some Infectious Diseases [in Russian]. Bioinform, Moscow (2002), 64–73.Google Scholar
  3. 3.
    S. Pal, V. Ramu, N. Taye, et al. Bioconjugate Chem., 2016, 27(9), 2062–2070.CrossRefGoogle Scholar
  4. 4.
    S. S. Singh and T. S. Thakur. CrystEngComm, 2014, 16, 4215–4230.CrossRefGoogle Scholar
  5. 5.
    S. Gunasekaran, K. Rajalakshmi, and S. Kumaresan. Spectrochim. Acta, 2013, 112A, 351–363.CrossRefGoogle Scholar
  6. 6.
    Cambridge Structural Database, Version 5.37. Univ. of Cambridge, Cambridge, UK, 2015.Google Scholar
  7. 7.
    N. N. Golovnev, M. S. Molokeev, I. V. Sterkhova, and I. I. Golovneva. J. Struct. Chem., 2016, 57(6), 1266–1269.CrossRefGoogle Scholar
  8. 8.
    N. N. Golovnev and M. S. Molokeev. Russ. J. Inorg. Chem., 2014, 59(2), 72–78.CrossRefGoogle Scholar
  9. 9.
    N. N. Golovnev and M. S. Molokeev. Russ. J. Coord. Chem., 2014, 40(9), 648–652.CrossRefGoogle Scholar
  10. 10.
    N. N. Golovnev and M. S. Molokeev. J. Struct. Chem., 2014, 55(1), 125–129.CrossRefGoogle Scholar
  11. 11.
    J.-L. Zhang, J. Yang, X. Wang, et al. Z. Anorg. Allg. Chem., 2015, 641, 820–825.CrossRefGoogle Scholar
  12. 12.
    X.-S. Wang, Y.-Z. Tang, and R.-G. Xiong. Chin. J. Inorg. Chem., 2005, 21(8), 1275–1277.Google Scholar
  13. 13.
    M. Gryl, M. Koziel, K. Stadnicka, et al. CrystEngComm, 2013, 15, 3275–3278.CrossRefGoogle Scholar
  14. 14.
    M. D. Prasanna and T. N. G. Row. J. Mol. Struct., 2001, 559, 255–261.CrossRefGoogle Scholar
  15. 15.
    A. D. Vasiliev, N. N. Golovnev, and M. S. Molokeev. J. Struct. Chem., 2005, 46(2), 363–370.CrossRefGoogle Scholar
  16. 16.
    N. N. Golovnev, M. S. Molokeev, I. I. Golovneva, and G. A. Glushchenko. J. Struct. Chem., 2013, 54(2), 377–382.CrossRefGoogle Scholar
  17. 17.
    S. V. Blokhina, A. V. Sharapova, M. V. Ol'khovich, et al. Eur. J. Pharm. Sci., 2016, 93, 29–37.CrossRefGoogle Scholar
  18. 18.
    N. N. Golovnev, M. S. Molokeev, L. S. Tarasova, et al. J. Mol. Struct., 2014, 1068, 216–221.CrossRefGoogle Scholar
  19. 19.
    V. L. Dorofeev. Pharmaceutical Chem. J., 2004, 38(12), 693–697.CrossRefGoogle Scholar
  20. 20.
    A. Tarushi, E. Polatoglou, J. Kljun, et al. DaltonTrans., 2011, 40, 9461–9473.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Golovnev
    • 1
  • M. S. Molokeev
    • 1
    • 2
    • 3
  • M. K. Lesnikov
    • 1
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Kirensky Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  3. 3.Far Eastern State Transport UniversityKhabarovskRussia

Personalised recommendations