Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 604–611 | Cite as

Numerical Calculation of Permittivity and Dielectric Loss of Aqueous KF Solution Depending on State Parameters

  • S. Odinaev
  • R. S. Makhmadbegov
Article
  • 6 Downloads

Abstract

Based on the analytical expressions for permittivity ε1(ω) and dielectric loss ε2(ω) are obtained by the kinetic equation method, the frequency spectra of these coefficients are analyzed for an aqueous KF solution in a wide variation range of the density ρ, the concentration C, and the temperature T. With a certain choice of the solution model, the potential interaction energy Φab(|r|), and the radial distribution function gab(|r|) of a- and b-type ions, ε1(ω) and ε2(ω) of an aqueous KF solution are numerically calculated depending on ρ, C, T, and ω.

Keywords

permittivity and dielectric loss intermolecular interaction potential radial distribution function friction coefficient of liquid relaxation time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. Yu. Akhadov. Dielectric Properties of Binary Solutions [in Russian]. Nauka, Moscow, 1977.Google Scholar
  2. 2.
    J. Barthel, R. Buchner, and M. Munsterer. Electrolyte data collection. Part2: Dielectric properties of water and aqueous electrolyte solutions. DECHEMA Chemistry Data Series, 1995, 12, Part 2,163.Google Scholar
  3. 3.
    O. Ya. Samoilov, P. S. Yastremskii, and A. K. Nesterova. J. Struct. Chem., 1974, 15(5), 812–914.CrossRefGoogle Scholar
  4. 4.
    A. K. Lyashchenko, V. S. Goncharov, and P. S. Yastremskii. J. Struct. Chem., 1976, 17(3), 396–399.CrossRefGoogle Scholar
  5. 5.
    V. S. Goncharov, A. K. Lyashchenko, and P. S. Yastremskii. J. Struct. Chem., 1976, 17(4), 571–574.CrossRefGoogle Scholar
  6. 6.
    A. K. Lyashchenko, V. S. Goncharov, and P. S. Yastremskii. J. Struct. Chem., 1976, 17(6), 871–876.CrossRefGoogle Scholar
  7. 7.
    U. Kaatze and V. Uhlendorf. Z. Phys. Chem., 1981, 126S, 151–165.CrossRefGoogle Scholar
  8. 8.
    U. Kaatze. J. Chem. Eng. Data, 1989, 34(4), 371–374.CrossRefGoogle Scholar
  9. 9.
    A. K. Lyashchenko and A. Yu. Zasetskii. J. Struct. Chem., 1998, 9(5), 851–863.Google Scholar
  10. 10.
    R. Buchner, J. Bartel, and J. Stauber. Chem. Phys. Let., 1999, 306, 57–63.CrossRefGoogle Scholar
  11. 11.
    M. L. T. Asaki, A. Redondo, T. A. Zawodzinski, and A. J. Taylor. J. Chem. Phys., 2002, 116(19), 8469–8482.CrossRefGoogle Scholar
  12. 12.
    Z. A. Filimonova, E. S. Verstakov, and A. K. Lyashchenko. Izvestia VSTU, 2005, 3(15), 41–43.Google Scholar
  13. 13.
    T. Miyazaki, G. Mogami, T. Wazawa, T. Kodama, and M. Suzuki. J. Phys. Chem. A, 2008, 112, 10801–10806.CrossRefGoogle Scholar
  14. 14.
    M. Buehler, D. Cobos, and K. Dunne. ISEMA Conf. Proceed. 2011, Paper, Buehler, 1423, Pub, 5 doc., 1–8.Google Scholar
  15. 15.
    E. Levy, A. Puzenko, U. Kaatze, P. B. Ishai, and Y. Feldman. J. Chem. Phys., 2012, 136(1-6), 114503.CrossRefGoogle Scholar
  16. 16.
    S. Horikoshi, T. Sumi, and N. Serpone. J. Microwave Power, 2012, 46(4), 215–228.Google Scholar
  17. 17.
    I. N. Sadovskii, A. V. Kuzmin, et al. Analysis of the models of aqueous medium permittivity used in the problems of water remote sensing. Preprint [in Russian] /Space Research Institute, Russian Academy of Sciences (2172). Moscow: 2013,60.Google Scholar
  18. 18.
    A. Zuber, L. Cardozo-Filho, V. F. Cabral, R. F. Checoni, and M. Castier. J. Fluid Phase Equil., 2014, 376, 116–123.CrossRefGoogle Scholar
  19. 19.
    A. Lileev, D. Loginova, A. Lyashchenko, L. Timofeeva, and N. Kleshchva. J. Mol. Liquids, 2007, 131-132, 101–104.CrossRefGoogle Scholar
  20. 20.
    A. Lileev and A. Lyashchenko. J. Mol. Liq., 2009, 150, 4–8.CrossRefGoogle Scholar
  21. 21.
    A. Lyashchenko and A. Lileev. J. Chem. Phys., 2010, 55, 2008–2016.Google Scholar
  22. 22.
    A. K. Lyashchenko, A. V. Kovelev, I. M. Karataeva, and A. S. Lileev. Rus. J. Inorg. Chem., 2014, 59(7), 757–765.CrossRefGoogle Scholar
  23. 23.
    S. Odinaev and R. S. Makhmadbegov. Ukr. J. Phys., 2015, 60(9), 862–869.CrossRefGoogle Scholar
  24. 24.
    S. Odinaev and R. S. Makhmadbegov. Ukr. J. Phys., 2015, 60(12), 1212–1219.CrossRefGoogle Scholar
  25. 25.
    S. Odinaev and R. S. Makhmadbegov. Rus. J. Phys. Chem., 2016, 90(1), 52–58.Google Scholar
  26. 26.
    Ali Sk. Musharaf, Alok Samanta, and Swapan Ghosh. J. Chem. Phys., 2001, 114(23), 10419.CrossRefGoogle Scholar
  27. 27.
    T. Erdey-Grúz. Transzportfolyamatok vizes oldatokban. Akadémiai Kiadó, Budapest, 1971.Google Scholar
  28. 28.
    I. Richard, P. H. Fries, and H. Krienke. J. Chem. Phys., 1998, 108(10), 4079.CrossRefGoogle Scholar
  29. 29.
    H. Krienke and J. Barthel. In: Equations of state for Fluids and Fluids Mixtures, Chap. 16: “Ionic fluids” / Eds. J. V. Sengers, et al. Amsterdam: Elsevier, 2000, 751–804.Google Scholar
  30. 30.
    S. Odinaev and D. M. Akdodov. Rus. J. Phys. Chem., 2013, 87(7), 1154.Google Scholar
  31. 31.
    H. Krienke, G. Ahn-Ercan, and J. Barthel. J. Mol. Liquids, 2004, 109,115.CrossRefGoogle Scholar
  32. 32.
    I. R. Iukhnovskii and M. F. Golovko. The Statistical Theory of Classical Equilibrium Systems [in Russian]. Naukova Dumka, Kiev, 1980.Google Scholar
  33. 33.
    H. Krienke, G. Ahn-Ercan, and J. Barthel. J. Mol. Liquids, 2004, 109,115.CrossRefGoogle Scholar
  34. 34.
    I. D. Zaitsev and G. G. Aseev. Physiochemical Properties of Binary and Multicomponent Solutions of Inorganic Substances. Handbook. [in Russian] Khimiya, Moscow, 1988.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Umarov Physical-Technical InstituteAcademy of Sciences of the Republic of TajikistanDushanbeTajikistan
  2. 2.Tajik National UniversityDushanbeTajikistan

Personalised recommendations