Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 555–564 | Cite as

Structural Transformations and Ionic Mobility in CsSbF3(H2PO4)

  • V. Ya. Kavun
  • L. A. Zemnukhova
  • A. B. Slobodyuk
  • E. V. Kovaleva
  • H. H. Savchenko
  • N. V. Makarenko
Article
  • 12 Downloads

Abstract

1H, 19F, 31P NMR, DSC, and XRD methods are used to study ionic mobility and structural transformations in the CsSbF3(H2PO4) compound (I). Radical changes in 1H, 19F, 31P NMR spectra above 390 K are associated with a crystalline disordered phase which forms in I at 400–420 K. This phase demonstrates high ionic mobility and further transforms (above 425 K) into the amorphous (glassy) phase. We have determined the types of ionic mobility in this compound and in its amorphous product. According to the NMR data, the diffusion in the proton sublattice of the disordered and amorphous phases proceeds even at room temperature.

Keywords

antimony(III) phosphate-fluoride complex CsSbF3(H2PO4ion mobility phase transition NMR spectra DSC XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hurter, R. Mattes, and D. Ruhl. J. Solid State Chem., 1983, 46, 204–208.CrossRefGoogle Scholar
  2. 2.
    R. Mattes and K. Holz. Angev. Chem., 1983, B95, 898/899.Google Scholar
  3. 3.
    K. Holz, F. Obst, and R. Mattes. J. Solid State Chem., 1991, 90, 353–360.CrossRefGoogle Scholar
  4. 4.
    R. L. Davidovich, L. A. Zemnukhova, G. A. Fedorishcheva, et al. Koord. Khim., 1990, 16, 177–184.Google Scholar
  5. 5.
    L. N. Komissarova, M. G. Zhizhin, and A. A. Filaretov. Usp. Khim., 2002, 71, 707–740.CrossRefGoogle Scholar
  6. 6.
    A. K. Ivanov-Schitz and I. V. Murin. Solid State Ionics [in Russian], Vol. 2, SPbSU Publish. House, SPb (2010).Google Scholar
  7. 7.
    A. I. Baranov, V. P. Khiznichenko, and L. A. Shuvalov. Ferroelectrics, 1989, 100, 135–141.CrossRefGoogle Scholar
  8. 8.
    F. Romain and A. Novak. J. Mol. Struct., 1991, 263, 69–74.CrossRefGoogle Scholar
  9. 9.
    K. Yamada, T. Sagara, Y. Yamane, et al. Solid State Ion., 2004, 175, 557–562.CrossRefGoogle Scholar
  10. 10.
    D. A. Boysen, S. M. Haile, J. H. Liu, and R. A. Secco. Chem. Mater., 2003, 15, 727–736.CrossRefGoogle Scholar
  11. 11.
    A. I. Baranov, B. V. Merinov, A. V. Tregubchenko, et al. Solid State Ion., 1989, 3/4, 279–282.CrossRefGoogle Scholar
  12. 12.
    S. M. Haile, G. Lentz, K. D. Kreuer, and J. Maier. Solid State Ion., 1995, 77, 128–134.CrossRefGoogle Scholar
  13. 13.
    V. G. Ponomareva and I. N. Bagryantseva. Neorg. Mater., 2012, 48, 231–238.CrossRefGoogle Scholar
  14. 14.
    I. N. Bagryantseva and V. G. Ponomareva. Solid State Ion., 2012, 225, 250–254.CrossRefGoogle Scholar
  15. 15.
    V. Ya. Kavun, N. F. Uvarov, A. B. Slobodyuk, et al. Elektrokhimiya, 2015, 51, 589–594.Google Scholar
  16. 16.
    V. Ya. Kavun, A. V. Gerasimenko, N. F. Uvarov, et al. J. Solid State Chem., 2016, 241, 9–17.CrossRefGoogle Scholar
  17. 17.
    A. A. Filaretov, M. G. Zhizhin, A. V. Olenev, et al. Zh. Neorg. Khim., 2002, 47, 1930–1946.Google Scholar
  18. 18.
    Y. Yamane, K. Yamada, and K. Inoue. Solid State Ion., 2008, 179, 483–488.CrossRefGoogle Scholar
  19. 19.
    A. Feltz. Amorphe und Glasartige Anorganische Festkörper. Berlin: Akademie-Verlag, 1983.Google Scholar
  20. 20.
    R. K. Brow. J. Non-Crystal. Solids, 2000, 263, 1–28.CrossRefGoogle Scholar
  21. 21.
    A. A. Arren. Chemistry of Glass [in Russian]. Leningrad: Khimiya, 1974.Google Scholar
  22. 22.
    G. V. Lavrova, E. S. Shutova, V. G. Ponomaryova, and L. A. Dunyushkina. Elektrokhimiya, 2013, 49, 801–807.Google Scholar
  23. 23.
    V. G. Ponomaryova, I. N. Bagryantseva, G. V. Lavrova, and N. K. Moroz. Neorg. Mater., 2014, 50, 770–777.Google Scholar
  24. 24.
    G. Kim, F. Blanc, Y.-Y. Hu, and C. P. Grey. J. Phys. Chem. C, 2013, 117, 6504–6515.CrossRefGoogle Scholar
  25. 25.
    J. P. Yesinowski and H. Eckert. J. Am. Chem. Soc., 1987, 109, 6274–6282.CrossRefGoogle Scholar
  26. 26.
    V. Ya. Kavun and V. I. Sergienko, Diffusion Mobility and Ionic Transport in the Crystalline and Amorphous Fluorides of IV Group Elements and Antimonium (III) [in Russian]. Vladivostok: Dalnauka, 2004.Google Scholar
  27. 27.
    R. K. Brow, C. A. Click, and T. M. Alam. J. Non-Cryst. Solids, 2000, 274, 9–16.CrossRefGoogle Scholar
  28. 28.
    S. W. Martin. Eur. J. Solid State Inorg. Chem., 1991, 28, 163–205.Google Scholar
  29. 29.
    S. Hayashi and K. Hayamizu. Bull. Chem. Soc. Jpn., 1989, 62, 3061–3068.CrossRefGoogle Scholar
  30. 30.
    R. K. Brow, R. J. Kirkpatrick, and G. L. Turner. J. Non-Cryst. Solids, 1990, 116, 39–45.CrossRefGoogle Scholar
  31. 31.
    P. Hartmann, J. Vogel, and B. Schnabel. J. Magn. Res. A, 1994, 111, 110–114.CrossRefGoogle Scholar
  32. 32.
    R. J. Kirkpatrick and R. K. Brow. Solid State Nucl. Magn. Reson, 1995, 5, 9–21.CrossRefGoogle Scholar
  33. 33.
    T. Djouama, M. Poulain, B. Bureau, and R. Lebullenger. J. Non-Cryst. Solids, 2015, 414, 16–20.CrossRefGoogle Scholar
  34. 34.
    R. K. Brow, C. C. Phifer, G. L. Turner, and R. J. Kirkpatrick. J. Am. Ceram. Soc., 1991, 74, 1287–1290.CrossRefGoogle Scholar
  35. 35.
    S. G. Jantz, L. van Wullen, A. Fischer, et al. Eur. J. Inorg. Chem., 2016, 1121–1128.Google Scholar
  36. 36.
    M. R. Buchner, F. Kraus, and H. Schmidbaur. Inorg. Chem., 2012, 51, 8860–8867.CrossRefGoogle Scholar
  37. 37.
    R. K. Sato, R. J. Kirkpatrick, and R. K. Brow. J. Non-Crystal. Solids, 1992, 143, 257–264.CrossRefGoogle Scholar
  38. 38.
    S. P. Gabuda and A. G. Lundin, Internal Mobility in Solids [in Russian], Novosibirsk: Nauka, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Ya. Kavun
    • 1
  • L. A. Zemnukhova
    • 1
  • A. B. Slobodyuk
    • 1
  • E. V. Kovaleva
    • 1
  • H. H. Savchenko
    • 1
  • N. V. Makarenko
    • 1
  1. 1.Institute of Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations