Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 512–519 | Cite as

Internal Rotation and Equilibrium Structure of the Bromonitromethane Molecule According to Gas Electron Diffraction Data and Quantum Chemical Calculations

  • Yu. I. Tarasov
  • I. V. Kochikov
  • Z. G. Bazhanova
Article
  • 11 Downloads

Abstract

The structure and internal rotation of the bromonitromethane molecule are studied using electron diffraction analysis and quantum chemical calculations. The electron diffraction data are analyzed within the models of a general intramolecular anharmonic force field and quantum chemical pseudoconformers to account for the adiabatic separation of a large amplitude motion associated with the internal rotation of the NO2 group. The following experimental bond lengths and valence angles are obtained for the equilibrium orthogonal configuration of the molecule with Cs symmetry: re(N=O) = 1.217(5) Å, re(C–N) = 1.48(2) Å, re(C–Br) = 1.919(5) Å, ∠еBr–C–N = 109.6(9)°, ∠еO=N=O = 125.9(9)°. The equilibrium geometry parameters are in good agreement with CCSD(T)/cc-pVTZ calculations. Thermally averaged parameters are calculated using the equilibrium geometry and quadratic and cubic quantum chemical force constants. The barrier to internal rotation cannot be determined reliably based on the electron diffraction data used in this work. There is a 82% probability that the equilibrium configuration with orthogonal C–Br and N=O bonds is most preferable, and internal rotation barrier does not exceed 280 cm-1, which agrees with CCSD(T)/cc-pVTZ calculations.

Keywords

bromonitromethane non-rigid molecules internal rotation gas electron diffraction quantum chemical calculations equilibrium structure anharmonicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Shen, J. W. Brown, J. A. Malona, J. C. Cochran, and A. D. Richardson. J. Phys. Chem. A, 2006, 110, 7491–7495.CrossRefGoogle Scholar
  2. 2.
    Yu. I. Tarasov, I. V. Kochikov, B. K. Novosadov, and D. M. Kovtun. In: Twenty-first Austin Symposium on Molecular Structure, The University of Texas at Austin, Austin, Texas, USA, March 4–7, Abstracts, 2006,94.Google Scholar
  3. 3.
    A. M. Kozin, D. V. Chachkov, E. V. Nikolaeva, A. G. Shamov, and G. M. Khrapkovsky. Vestn. Kazan. Tekhnol. Univ., 2011, 20, 46–54.Google Scholar
  4. 4.
    S. Samdal, H. M. Seip, and T. Torgrimsen. J. Mol. Struct., 1979, 57, 105–121.CrossRefGoogle Scholar
  5. 5.
    V. Kochikov, Yu. I. Tarasov, N. Vogt, and V. P. Spiridonov. J. Mol. Struct., 2002, 607(2-3), 163–174.CrossRefGoogle Scholar
  6. 6.
    V. Kochikov and Yu. I. Tarasov. Struct. Chem., 2003, 14(2), 227–238.CrossRefGoogle Scholar
  7. 7.
    M. Dakkouri, I. V. Kochikov, Yu. I. Tarasov, N. Vogt, J. Vogt, and R. Bitschenauer. J. Mol. Struct., 2002, 607(2/3), 195–206.CrossRefGoogle Scholar
  8. 8.
    Yu. I. Tarasov, I. V. Kochikov, N. Vogt, A. V. Stepanova, D. M. Kovtun, A. A. Ivanov, A. N. Rykov, R. Z. Deyanov, B. K. Novosadov, and J. Vogt. J. Mol. Struct., 2008, 872(2/3), 150–165.CrossRefGoogle Scholar
  9. 9.
    Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, and A. A. Ivanov. J. Mol. Struct., 2009, 921(1-3), 255–263.CrossRefGoogle Scholar
  10. 10.
    D. M. Kovtun, I. V. Kochikov, and Yu. I. Tarasov. J. Mol. Struct., 2015, 1100, 311–317.CrossRefGoogle Scholar
  11. 11.
    D. M. Kovtun, I. V. Kochikov, and Yu. I. Tarasov. J. Phys. Chem. A, 2015, 119(9), 1657–1665.CrossRefGoogle Scholar
  12. 12.
    L. S. Khaikin, I. V. Kochikov, D. S. Tikhonov, and O. E. Grikina. Russ. J. Phys. Chem. A, 2015, 89(6), 1033–1040.CrossRefGoogle Scholar
  13. 13.
    Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, E. A. Polenov, and A. A. Ivanov. J. Struct. Chem., 2017, 58(3), 498–507.CrossRefGoogle Scholar
  14. 14.
    V. Kochikov, D. M. Kovtun, and Yu. I. Tarasov. J. Mol. Struct., 2017, 1132, 139–148.CrossRefGoogle Scholar
  15. 15.
    Yu. I. Tarasov, I. V. Kochikov, A. A. Ivanov, D. M. Kovtun, and G. A. Zhurko. J. Struct. Chem., 2008, 49(3), 414–420.CrossRefGoogle Scholar
  16. 16.
    V. Kochikov, D. M. Kovtun, and Yu. I. Tarasov. Num. Meth. and Prog., 2008, 9(1), 12–18.Google Scholar
  17. 17.
    V. Kochikov, Yu. I. Tarasov, and A. A. Ivanov. J. Struct. Chem., 2007, 48(3), 558–563.CrossRefGoogle Scholar
  18. 18.
    A. W. Ross, M. Fink, and R. Hildebrandt. In: International Tables for X-ray Crystallography. Vol. C. Ed.: A. J. C. Wilson. Dordrecht: Kluwer Academic Publishers, 1992, 362–390.Google Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, Ö. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA, 2003.Google Scholar
  20. 20.
    H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz. WIREs Comput. Mol. Sci., 2012, 2(2), 242–253.CrossRefGoogle Scholar
  21. 21.
    H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang. MOLPRO, version 2012.1, a package of ab initio programs, http://www.molpro.net.Google Scholar
  22. 22.
    V. Kochikov, G. M. Kuramshina, A. V. Stepanova, and A. G. Yagola. Moscow Univ. Phys. Bull. (Engl. Transl.), 1997, 52(5), 28–33.Google Scholar
  23. 23.
    V. Kochikov, Yu. I. Tarasov, V. P. Spiridonov, G. M. Kuramshina, A. S. Saakjan, and A. G. Yagola. J. Mol. Struct., 2000, 550/551, 429–438.CrossRefGoogle Scholar
  24. 24.
    Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, N. Vogt, B. K. Novosadov, and A. S. Saakyan. J. Struct. Chem., 2004, 45(5), 778–785.CrossRefGoogle Scholar
  25. 25.
    V. Kochikov, Yu. I. Tarasov, V. P. Spiridonov, G. M. Kuramshina, A. G. Yagola, A. S. Saakjan, M. V. Popik, and S. Samdal. J. Mol. Struct., 1999, 485/486, 421–443.CrossRefGoogle Scholar
  26. 26.
    V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko. “Lomonosov”: Supercomputing at Moscow State University. In Contemporary High Performance Computing: From Petascale toward Exascale (Chapman & Hall/CRC Computational Science), 283–307, Boca Raton, USA, CRC Press, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. I. Tarasov
    • 1
    • 2
  • I. V. Kochikov
    • 3
  • Z. G. Bazhanova
    • 3
  1. 1.Institute of Fine Chemical TechnologyMoscow Technological UniversityMoscowRussia
  2. 2.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia
  3. 3.Computational Research CenterLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations