Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 3, pp 506–511 | Cite as

A Quantum Chemical Study of C60Cl30, C60(OH)30 Molecules and Fe@C60(OH)30 Endocomplex

  • S. G. Semenov
  • M. E. Bedrina
  • A. V. Titov
Article
  • 14 Downloads

Abstract

(U)PBE0/cc-pVDZ method is used to study the structure of C60Cl30, C60(OH)30 molecules and Fe@C60(OH)30 endocomplex. The triplet state of the endocomplex is shown to be the lowest in energy among its four states corresponding to different spin multiplicities and positions of Fe nucleus within the fullerene cavity. This state is characterized by bonding between the iron atom and one of two benzenoid cycles of the carbon cage, six internuclear Fe–C distances (208 pm), and 1s22s22p63s23p63d7.24s0.14p0.3 electron configuration of iron with spin population of 2.36.

Keywords

chlorinated fullerene hydroxylated fullerene iron endocomplex structure DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Pradeep, G. U. Kulkarni, K. R. Kannan, T. N. Guru Row, and C. N. R. Rao. J. Am. Chem. Soc., 1992, 114, 2272.CrossRefGoogle Scholar
  2. 2.
    T. Asaji, T. Ohba, T. Uchida, H. Minezaki, S. Ishihara, R. Racz, M. Muramatsu, S. Biri, A. Kitagawa, Y. Kato, and Y. Yoshida. Rev. Sci. Instrum., 2014, 85, 02A936-1.Google Scholar
  3. 3.
    C.-M. Tang, K.-M. Deng, J.-L. Yang, and X. Wang. Chin. J. Chem., 2006, 24, 1133.CrossRefGoogle Scholar
  4. 4.
    Estrada R. E. Estrada-Salas and A. A. Valladares. J. Mol. Struct. (THEOCHEM), 2008, 869,1.CrossRefGoogle Scholar
  5. 5.
    M. B. Javan, N. Tajabor, M. Behdani, and M. R. Rokn-Abadi. Physica (B), 2010, 405, 4937.CrossRefGoogle Scholar
  6. 6.
    S. G. Semenov, M. E. Bedrina, M. V. Makarova, and A. V. Titov. J. Struct. Chem., 2017, 58(3), 447–451.CrossRefGoogle Scholar
  7. 7.
    A. A. Szhogina, Yu. V. Kul'velis, V. T. Lebedev, and V. P. Sedov. Russ. J. Appl. Chem., 2015, 88, 2009.CrossRefGoogle Scholar
  8. 8.
    X. J. Gao, X. Shen, B.-Z. Chen, and X. Gao. J. Phys. Chem., 2016, 120, 11709.Google Scholar
  9. 9.
    Z. Wang, X. Chang, Z. Lu, M. Gu, Y. Zao, and X. Gao. Chem. Sci., 2014, 5, 2940.CrossRefGoogle Scholar
  10. 10.
    H. He, L. Zheng, P. Jin, and M. Yang. Comp. Theor. Chem., 2011, 974,16.CrossRefGoogle Scholar
  11. 11.
    R. A. Guirado-Lopez and M. E. Rincon. J. Chem. Phys., 2006, 120, 154312.CrossRefGoogle Scholar
  12. 12.
    J. G. Rodriguez-Zavala and R. A. Guirado-Lopez. J. Phys. Chem., 2006, 110, 9459.CrossRefGoogle Scholar
  13. 13.
    J. G. Rodriguez-Zavala and R. A. Guirado-Lopez. Phys. Rev. B, 2004, 69, 075411.CrossRefGoogle Scholar
  14. 14.
    P. A. Troshin, R. N. Lyubovskaya, I. N. Ioffe, N. B. Shustova, E. Kemnitz, and S. I. Troyanov. Angew. Chem., Int. Ed., 2005, 44,235.CrossRefGoogle Scholar
  15. 15.
    S. I. Troyanov, N. B. Shustova, A. A. Popov, and L. N. Sidorov. Russ. Chem. Bull., Int. Ed., 2005, 54, 1656.CrossRefGoogle Scholar
  16. 16.
    P. A. Troshin, A. Lapinski, A. Bogucki, M. Polomska, and R. N. Lyubovskaya. Carbon., 2006, 44, 2770.CrossRefGoogle Scholar
  17. 17.
    A. A. Popov, V. M. Senyavin, and S. I. Troyanov. J. Phys. Chem., A, 2006, 110, 7414.CrossRefGoogle Scholar
  18. 18.
    Yu. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, I. P. Asanov, S. I. Troyanov, and D. V. Vyalikh. Int. J. Quant. Chem., 2011, 111, 2688.CrossRefGoogle Scholar
  19. 19.
    K. Takatsuka, T. Fueno, and K. Yamaguchi. Theor. Chim. Acta, 1978, 48,175.CrossRefGoogle Scholar
  20. 20.
    A. E. Reed, R. B. Weinstock, and F. Weinhold. J. Chem. Phys., 1985, 83,746.Google Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, rev. D.01. Wallingford CT, Gaussian, Inc., 2013.Google Scholar
  22. 22.
    K. Kokubo, S. Shirakawa, N. Kobayashi, H. Aoshima, and T. Oshima. Nano Res., 2011, 4, 204.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute”Konstantinov Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations