Neurophysiological Mechanisms of Respiratory Activity in Cyclostomes and Fish during Aquatic Breathing

  • E. E. KolesnikovaEmail author


The review addresses the features of the establishment of respiratory activity in the ancient taxa, cyclostomes and fish, which allowed them to adapt to aquatic habitats with a low oxygen level. The brainstem of cyclostomes and fish contains a basic set of nuclei that provides the formation of adequate respiratory activity. The latter is mediated by the universal excitatory and inhibitory neurotransmitters (glutamate, GABA, glycine), suggesting the existence of pivotal, evolutionarily conserved mechanisms to reproduce respiratory oscillations. The qualities of water as a habitat with a reduced oxygen tension determine a high significance of branchial and extrabranchial oxygen-sensitive chemoreceptors which share similar features with highly specialized mammalian oxygen receptors. Neurophysiological details of the respiratory rhythm generator machinery as well as peculiarities of respiratory adaptation to fluctuations in water oxygen tension (PwO2) in agnathans (cyclostomes) and gnathostome fish support the concept of a close relationship between the evolutionarily “verified” adaptive mechanisms regardless of the level of organization of individual vertebrate classes.


cyclostomes fish respiratory rhythm generator neuroepithelial cells GABA glutamate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bongianni, F., Mutolo, D., Nardone, F., and Pantaleo, T., GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control, Brain Res., 2006, vol. 1090, pp. 134–145.CrossRefGoogle Scholar
  2. 2.
    Martel, B., Guimond, J.C., Gariépy, J.F., Gravel, J., Auclair, F., Kolta, A., Lund, J.P., and Dubuc, R., Respiratory rhythms generated in the lamprey rhombencephalon, Neurosci., 2007, vol. 148 (1), pp. 279–293.CrossRefGoogle Scholar
  3. 3.
    Mutolo, D., Bongianni, F., Einum, J., Dubuc, R., and Pantaleo, T., Opioid-induced depression in the lamprey respiratory network, Neurosci., 2007, vol. 150 (2), pp. 720–729.CrossRefGoogle Scholar
  4. 4.
    Mutolo, D., Bongianni, F., Cinelli, E., and Pantaleo, T., Role of neurokinin receptors and ionic mechanisms within the respiratory network of the lamprey, Neurosci., 2010, vol. 169 (3), pp. 1136–1149.CrossRefGoogle Scholar
  5. 5.
    Cinelli, E., Robertson, B., Mutolo, D., Grillner, S., Pantaleo, T., and Bongianni, F., Neuronal mechanism of respiratory pattern generation is evolutionary conserved, J. Neurosci., 2013, vol. 33, pp. 9104–9112.CrossRefGoogle Scholar
  6. 6.
    Taylor, E.W., Leite, C.A.C., McKenzie, D.J., and Wang, T., Control of respiration in fish, amphibians and reptiles, Braz. J. Med. Bio. Res., 2010, vol. 43 (5), pp. 409–424.CrossRefGoogle Scholar
  7. 7.
    Bongianni, F., Mutolo, D., Cinelli, E., and Pantaleo, T., Neural mechanism underlying respiratory rhythm generation in the lamprey, Resp. Physiol. Neurobiol., 2016, vol. 224, pp. 17–26.CrossRefGoogle Scholar
  8. 8.
    Guimond, J.C., Auclair, F., Lund, J.P., and Dubuc, R., Anatomical and physiological study of respiratory motor innervation in lampreys, Neurosci., 2003, vol. 122, pp. 259–266.CrossRefGoogle Scholar
  9. 9.
    Rovainen, C.M., Respiratory motoneurons in lampreys, J. Comp. Physiol., 1974, vol. 94, pp. 57–68.CrossRefGoogle Scholar
  10. 10.
    Gariepy, J.F., Missaghi, K., Chartré, S., Robert, M., Auclair, F., and Dubuc, R., Bilateral connectivity in the brainstem respiratory networks of lampreys, J. Comp. Neurol., 2012, vol. 520 (7), pp. 1442–1456.CrossRefGoogle Scholar
  11. 11.
    Rovainen, C.M., Respiratory bursts at the midline of the rostral medulla of the lamprey, J. Comp. Physiol., 1985, vol. 157 (3), pp. 303–309.CrossRefGoogle Scholar
  12. 12.
    Rovainen, C.M., Feeding and breathing in lamprey, Brain Behav. Evol., 1996, vol. 48, pp. 297–305.CrossRefGoogle Scholar
  13. 13.
    Kawasaki, R., Breathing rhythm-generation in the adult lamprey, Entosphenus japonicas, Jpn. J. Physiol., 1979, vol. 29, pp. 327–338.CrossRefGoogle Scholar
  14. 14.
    Kawasaki, R., Breathing rhythm-generation mechanism in the adult lamprey (Lampetra japonica), Jpn. J. Physiol., 1984, vol. 34, pp. 319–335.CrossRefGoogle Scholar
  15. 15.
    Thompson, K.J., Organization of inputs to motoneurons during fictive respiration in the isolated lamprey brain, J. Comp. Physiol., 1985, vol. 157, pp. 291–302.CrossRefGoogle Scholar
  16. 16.
    Cinelli, E., Mutolo, D., Robertson, B., Grillner, S., Contini, M., Pantaleo, T., and Bongianni, F., GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network, J. Physiol., 2014, vol. 592 (8), pp. 1823–1838.CrossRefGoogle Scholar
  17. 17.
    Bongianni, F., Deliagina, T.G., and Grillner, S., Role of glutamate receptor subtypes in the lamprey respiratory network, Brain Res., 1999, vol. 826, pp. 298–302.CrossRefGoogle Scholar
  18. 18.
    Bongianni, F., Mutolo, D., Carfi, M., and Pantaleo, T., Group I and II metabotropic glutamate receptors modulate respiratory activity in the lamprey, Eur. J. Neurosci., 2002, vol. 16, pp. 454–460.CrossRefGoogle Scholar
  19. 19.
    Villar-Cerviño, V., Barreiro-Iglesias, A., Fernández- López, B., Mazan, S., Rodicio, M.C., and Anadón, R., Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: An in situ hybridization and immunocytochemical study, J. Comp. Neurol., 2013, vol. 521 (3), pp. 522–557.CrossRefGoogle Scholar
  20. 20.
    Cinelli, E., Mutolo, D., Contini, M., Pantaleo, T., and Bongianni, F., Inhibitory control of ascending glutamatergic projections to the lamprey respiratory rhythm generator, Neurosci., 2016, vol. 326, pp. 126–140.CrossRefGoogle Scholar
  21. 21.
    Rovainen, C.M., Generation of respiratory activity by the lamprey brain exposed to picrotoxin and strychnine, and weak synaptic inhibition in motoneurons, Neurosci., 1983, vol. 10 (3), pp. 875–882.CrossRefGoogle Scholar
  22. 22.
    Mutolo, D., Cinelli, E., Bongianni, F., and Pantaleo, T., Identification of cholinergic modulatory and rhythmogenic mechanism within the lamprey respiratory network, J. Neurosci., 2011, vol. 31, pp. 13 323–13 332.CrossRefGoogle Scholar
  23. 23.
    Tryba, A.K., Pena, F., and Ramirez, J.M., Stabilization of bursting in respiratory pacemaker neurons, J. Neurosci., 2003, vol. 23, pp. 3538–3546.CrossRefGoogle Scholar
  24. 24.
    Pombal, M.A., Marin, O., and Gonzalez, A., Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain, J. Comp. Neurol., 2001, vol. 431, pp. 105–126.CrossRefGoogle Scholar
  25. 25.
    Reid, S.G., Sundin, L., Florindo, L.H., Rantin, F.T., and Milsom, W.K., Effects of afferent input on the breathing pattern continuum in the tambaqui (Colossoma macropomum), Resp. Physiol. Neurobiol., 2003, vol. 36, pp. 39–53.CrossRefGoogle Scholar
  26. 26.
    Taylor, E.W., Leite, C.A., Florindo, L.H., Belao, T., and Rantin, F.T., The basis of vagal efferent control of heart rate in a Neotropical fish, the pacu, Piaractus mesopotamicus, J. Exp. Biol., 2009, vol. 212, pp. 906–913.CrossRefGoogle Scholar
  27. 27.
    Reid, S.G., Sundin, L., and Milsom, W.K., The cardiorespiratory system in tropical fishes: structure, function, and control, Fish Physiol., 2005, vol. 21, pp. 225–275.CrossRefGoogle Scholar
  28. 28.
    Dunel-Erb, S., Bailly, Y., and Laurent, P., Neuroepithelial cells in fish gill primary lamellae, J. App. Physiol., 1982, vol. 53, pp. 1342–1353.CrossRefGoogle Scholar
  29. 29.
    Sundin, L. and Nilsson, S., Branchial innervation, J. Exp. Zool., 2002, vol. 293 (3), pp. 232–248.CrossRefGoogle Scholar
  30. 30.
    Burleson, M.L., Sensory innervation of the gills: O2-sensitive chemoreceptors and mechanoreceptors, Acta Histochem., 2009, vol. 111 (3), pp. 196–206.CrossRefGoogle Scholar
  31. 31.
    Zaccone, G., Fasulo, S., and Ainis, L., Distribution patterns of the paraneuronal endocrine cells in the skin, gills and the airways of fishes as determined by immunohistochemical and histological methods, Histochem. J., 1994, vol. 26 (8), pp. 609–629.CrossRefGoogle Scholar
  32. 32.
    Zaccone, G., Fasulo, S., Ainis, L., and Licata, A., Paraneurons in the gills and airways of fishes, Microsc. Res. Tech., 1997, vol. 37 (1), pp. 4–12.CrossRefGoogle Scholar
  33. 33.
    Wilson, J.M. and Laurent, P., Fish gill morphology: inside out, J. Exp. Zool., 2002, vol. 293, pp. 192–213.CrossRefGoogle Scholar
  34. 34.
    Bailly, Y., Dunel-Erb, S., and Laurent, P., The neuroepithelial cells of the fish gill filament: indolamine-immunocytochemistry and innervation, Anat. Rec., 1992, vol. 233 (1), pp. 143–161.CrossRefGoogle Scholar
  35. 35.
    Jonz, M.G. and Nurse, C.A., Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study, J. Comp. Neurol., 2003, vol. 461, pp. 1–17.CrossRefGoogle Scholar
  36. 36.
    Rahbar, S., Pan, W., and Jonz, M.G., Purinergic and cholinergic drugs mediate hyperventilation in zebrafish: evidence from a novel chemical screen, PLoS One, 2016, vol. 11 (4), pp. 1–15.CrossRefGoogle Scholar
  37. 37.
    Jonz, M.G., Fearon, I.M., and Nurse, C.A., Neuroepithelial oxygen chemoreceptors of the zebrafish gills, J. Physiol., 2004, vol. 560, pp. 737–752.CrossRefGoogle Scholar
  38. 38.
    Barreiro-Iglesias, A., Aldegunde, M., Anadón, R., and Rodicio, M.C., Extensive presence of serotonergic cells and fibers in the peripheral nervous system of lampreys, J. Comp. Neurol. 2009, vol. 512 (4), pp. 478–499.CrossRefGoogle Scholar
  39. 39.
    Vulesevic, B., McNeill, B., and Perry, S.F., Chemoreceptor plasticity and respiratory acclimatixzation in zebrafish Danio rerio, J. Exp. Biol., 2006, vol. 209, pp. 1261–1273.CrossRefGoogle Scholar
  40. 40.
    Peers, C. and Kemp, P.J., Acute oxygen sensing: diverse but convergent mechanisms in airway and arterial chemoreceptors, Respir. Res., 2001, vol. 2, pp. 145–149.CrossRefGoogle Scholar
  41. 41.
    Porteus, C.S., Abdallah, S.J., Pollack, J., Kumai, Y., Kwong, R.W.M., Yew, H.M., Milsom, W.K., and Perry, S.F., The role of hydrogen sulfide in the control of breathing in hypoxic zebrafish (Danio rerio), J. Physiol., 2015, vol. 592 (14), pp. 3075–3088.CrossRefGoogle Scholar
  42. 42.
    Olson, K.R., Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control, J. Exp. Biol., 2008, vol. 211 (Pt 17), pp. 2727–2734.CrossRefGoogle Scholar
  43. 43.
    Butler, P.J. and Taylor, E.W., Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induced hypoxia, Comp. Biochem. Physiol., 1971, vol. 39A, pp. 307–323.CrossRefGoogle Scholar
  44. 44.
    Butler, P.J., Taylor, E.W., and Short, S., The effect of sectioning cranial nerves V, VII, IX and X on the cardiac response of the dogfish Scyliorhinus canicula to environmental hypoxia, J. Exp. Biol., 1977, vol. 69, pp. 233–245.Google Scholar
  45. 45.
    Fritsche, R. and Nilsson, S., Cardiovascular responses to hypoxia in the Atlantic cod, Gadus morhua, Exp. Biol., 1989, vol. 48, pp. 153–160.Google Scholar
  46. 46.
    Smith, F.M. and Jones, D.R., Localization of receptors causing hypoxic bradycardia in trout (Salmo gairdneri), Can. J. Zool., 1978, vol. 56, pp. 1260–1265.CrossRefGoogle Scholar
  47. 47.
    Daxboeck, C. and Holeton, G.F., Oxygen receptors in the rainbow trout, Salmo gairdneri, Can. J. Zool., 1978, vol. 56, pp. 1254–1259.CrossRefGoogle Scholar
  48. 48.
    Smith, F.M. and Davie, P.S., Effects of sectioning cranial nerves IX and X on the cardiac response to hypoxia in the coho salmon, Oncorhynchus kisutch, Can. J. Zool., 1984, vol. 62, pp. 766–768.CrossRefGoogle Scholar
  49. 49.
    Sundin, L., Reid, S.G., Kalinin, A.L., Rantin, F.T., and Milsom, W.K., Cardiovascular and respiratory reflexes: the tropical fish, traira (Hoplias malabaricus) O2 chemoresponses, Respir. Physiol., 1999, vol. 116 (2–3), pp. 181–199.CrossRefGoogle Scholar
  50. 50.
    Burleson, M.L. and Smatresk, N.J., Effects of sectioning cranial nerves IX and X on cardiovascular and ventilatory reflex responses to hypoxia and NaCN in channel catfish, J. Exp. Biol., 1990, vol. 154, pp. 407–420.Google Scholar
  51. 51.
    Coolidge, E.H., Ciuhandi, C.S., and Milsom, W.K., A comparative analysis of putative oxygen-sensing cells in the fish gill, J. Exp. Biol., 2008, vol. 211, pp. 1231–1242.CrossRefGoogle Scholar
  52. 52.
    Milsom, W.K. and Brill, R.W., Oxygen sensitive afferent information arising from the first gill arch of yellowfin tuna, Resp. Physiol., 1986, vol. 66, pp. 193–203.CrossRefGoogle Scholar
  53. 53.
    Burleson, M.L. and Milsom, W.K., Sensory receptors on the first gill arch of rainbow trout, Resp. Physiol., 1993, vol. 93, pp. 97–110.CrossRefGoogle Scholar
  54. 54.
    Sundin, L., Reid, S.G., Rantin, F.T., and Milsom, W.K., Branchial receptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (Colossoma macropomum), J. Exp. Biol., 2000, vol. 203 (Pt 7), pp. 1225–1239.Google Scholar
  55. 55.
    Meek, J. and Nieuwenhuys, R., Holosteans and teleosts, The Central Nervous System of Vertebrates, vol. 2, Nieuwenhuys, R., ten Donkelaar, H.I., and Nicholson, C., Eds., Berlin, 1998, pp. 759–937.CrossRefGoogle Scholar
  56. 56.
    Turesson, J. and Sundin, L., N-methyl-D-aspartate receptors mediate chemoreflex in the shorthorn sculpin Myoxocephalus scorpius, J. Exp. Biol., 2003, vol. 206, pp. 1251–1259.CrossRefGoogle Scholar
  57. 57.
    Florindo, L.H., Leite, C.A.C., Kalinin, A.H., Reid, S.G., Milsom, W.K., and Rantin, F.T., The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma masropomum): progressive responses to prolonged hypoxia, J. Exp. Biol., 2006, vol. 209, pp. 1709–1715.CrossRefGoogle Scholar
  58. 58.
    Saunders, R.L. and Sutterlin, A.M., Cardiac and respiratory responses to hypoxia in the sea raven, Hemitripterus americanus and an investigation of possible control mechanisms, J. Fish. Res. Bd Can., 1971, vol. 28, pp. 491–503.CrossRefGoogle Scholar
  59. 59.
    Milsom, W.K., Reid, S.G., Rantin, F.T., and Sundin, L., Extrabranchial chemoreceptors involved in respiratory reflexes in the neotropical fish Colossoma macropomum (the tambaqui), J. Exp. Biol., 2002, vol. 205 (Pt 12), pp. 1765–1774.Google Scholar
  60. 60.
    Jones, D.R. and Milsom, W.K., Peripheral receptors affecting breathing and cardiovascular function in non-mammalian vertebrates, J. Еxp. Biol, 1982, vol. 100, pp. 59–91.Google Scholar
  61. 61.
    Johansen, K., Lenfant, C., and Hanson, D., Gas exchange in the lamprey, Entosphenus tridentatus, Comp. Biochem. Physiol., 1973, vol. 44, pp. 107–119.CrossRefGoogle Scholar
  62. 62.
    Nikinmaa, M. and Weber, R.E., Hypoxic acclimation in the lamprey, Lampetra fluviatilis: organismic and erythrocytic responses, J. Exp. Biol., vol. 109, pp. 109–119.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.A. O. Kovalevsky Institute of Marine Biological ResearchRussian Academy of SciencesSevastopolRussia

Personalised recommendations