Biochemical Aspects of Hydroquinone Impact on Motor Activity in Newborn Rats

  • M. A. TerpilovskiiEmail author
  • S. V. Kuznetsov
  • N. V. Goncharov
Comparative and Ontogenic Biochemistry


The effects of hydroquinone (200 mg/kg) on spontaneous periodic motor activity (SPMA) and a number of biochemical markers were studied in 116-day-old rats. According to Laborit (1965), the mechanism of hydroquinone action is based on inhibition of the pentose phosphate pathway in excitable structures. Herein, we confirmed that intraperitoneal injection of hydroquinone drastically changes the SPMA pattern, inducing uninterrupted intense motor activity. To test the metabolic, redox and anticholinergic hypotheses, various feasible targets of hydroquinone were addressed. The experimental results revealed age-related changes in a number of biochemical markers. In erythrocytes (RBC), hydroquinone induced a slight increase in lactate and pyruvate levels but did not affect the glucose level, nor did it inhibit the activity of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) in vitro. Hydroquinone did not affect significantly RBS levels of reduced and oxidised glutathione (GSH and GSSG) and different types of hemoglobin as well as plasma levels of malonic dialdehyde (MDA). High doses of hydroquinone inhibited RBC acetylcholinesterase (AChE) in vitro. However, blockade of central and peripheral muscarinic and nicotinic acetylcholine receptors, induced both before and after hydroquinone injection, did not prevent SPMA potentiation and changes in its pattern. Thus, our results cast doubt both on the metabolic hypothesis of the hydroquinone action and the physiological relevance of its anticholinesterase effect to enhancing motor activity. The tasks for further investigation in this direction are outlined.

Key words

early ontogenesis motor activity hydroquinone pentose cycle redox potential acetylcholinesterase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laborit, H., Les régulations métaboliques, Paris, 1965.Google Scholar
  2. 2.
    Kuznetsov, S.V., The dependence of spontaneous excitation processes on metabolic activity in the early postnatal period, J. Evol. Biochem. Physiol., 1996, vol. 32, pp. 338–345.Google Scholar
  3. 3.
    Thor, H., Smith, M.T., Hartzell, P., Bellomo, G., Jewell, S.A., and Orrenius, S., The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells, J. Biol. Chem., 1982, vol. 257, pp. 12419–12425.Google Scholar
  4. 4.
    Li, Y. and Trush, M.A., DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu (II)/Cu (I) redox cycle and reactive oxygen generation, Carcin., 1993, vol. 14, pp. 1303–1311.CrossRefGoogle Scholar
  5. 5.
    Taguchi, K., Fujii, S., Yamano, S., Cho, A.K., Kamisuki, S., Nakai, Y., Sugawara, F., Froines, J.R., and Kumagai, Y., An approach to evaluate twoelectron reduction of 9, 10-phenanthraquinone and redox activity of the hydroquinone associated with oxidative stress, Free Rad. Biol. Med., 2007, vol. 43, pp. 789–799.CrossRefGoogle Scholar
  6. 6.
    Aggarwal, N.T. and Makielski, J.C., Redox control of cardiac excitability, Antioxid. Redox Signal., 2013, vol. 18, pp. 432–468.CrossRefGoogle Scholar
  7. 7.
    Byeon, S.E., Yu, T., Yang, Y., Lee, Y.G., Kim, J.H., Oh, J., Jeong, H.Y., Hong, S., Yoo, B.C., Cho, W.J., Hong, S., and Cho, J.Y., Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues, Free Rad. Biol. Med., 2013, vol. 57, pp. 105–118.CrossRefGoogle Scholar
  8. 8.
    DeCaprio, A.P., The toxicology of hydroquinone–relevance to occupational and environmental exposure, Crit. Rev. Toxicol., 1999, vol. 29, no. 3, pp. 283–330.CrossRefGoogle Scholar
  9. 9.
    Wang, H., Zhou, G., Gao, X., Wang, Y., and Yao, W., Acetylcholinesterase inhibitory-active components of Rhodiola rosea L., Food Chem., 2007, vol. 105, no. 1, pp. 24–27.CrossRefGoogle Scholar
  10. 10.
    Scozzafava, A., Kalin, P., Supuran, C.T., Gülçin, I., and Alwasel, S.H., The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (ACh I, II, IX, and XII), J. Enzyme Inhib. Med. Chem., 2015, vol. 30, pp. 941–946.CrossRefGoogle Scholar
  11. 11.
    Chambers, P.L. and Rowan, M.J., An analysis of the toxicity of hydroquinone on central synaptic transmission, Toxicol. Appl. Pharmacol., 1980, vol. 54, pp. 238–243.CrossRefGoogle Scholar
  12. 12.
    Otsuka, M. and Nonomura, Y., The action of phenolic substances on motor nerve endings, J. Pharmacol. Exp. Ther., 1963, vol. 140, no. 1, pp. 41–45.Google Scholar
  13. 13.
    Stepuro, I.I., Chaikovskaya, N.A., Vodoevich, V.P., and Vinogradov, V.V., Reduction of methemoglobin and ferricytochrome c by glycosylated amino acids and albumin, Biochem. (Moscow), 1997, vol. 62, no. 9, pp. 967–972.Google Scholar
  14. 14.
    Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem., 1969, vol. 27, pp. 502–522.CrossRefGoogle Scholar
  15. 15.
    Rahman, I., Kode, A., and Biswas, S.K., Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat. Protoc., 2006, vol. 1, pp. 3159–3165.CrossRefGoogle Scholar
  16. 16.
    Esterbauer, H. and Cheeseman, K., Determination of aldehydic lipid peroxidation products: malonaldialdehyde on related aldehydes, Free Rad. Biol. Med., 1991, vol. 11, pp. 81–128.CrossRefGoogle Scholar
  17. 17.
    Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 1961, vol. 7, no. 2, pp. 88–95.CrossRefGoogle Scholar
  18. 18.
    Pérez, F. and Granger, B.E., IPython: a system for interactive scientific computing, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 21–29.CrossRefGoogle Scholar
  19. 19.
    McKinney, W., Data structures for statistical computing in python, Proc. Of the 9th Python in Sci. Conf., 2010, vol. 445, pp. 51–56.Google Scholar
  20. 20.
    Van Der Walt, S., Colbert, S.C., and Varoquaux, G., The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 2011, vol. 13, no. 2, pp. 22–30.CrossRefGoogle Scholar
  21. 21.
    Hunter, J.D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 90–95.CrossRefGoogle Scholar
  22. 22.
    Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Stat. Soc. Ser. B, Stat. Methodol., 1995, vol. 57, pp. 289–300.Google Scholar
  23. 23.
    Holm, S., A simple sequentially rejective multiple test procedure, Scand. J. Stat., 1979, vol. 6, no. 2, pp. 65–70.Google Scholar
  24. 24.
    Lucarelli, G., Porcellini, A., Carnevali, C., Carmena, A., and Stohlman, F., Fetal and neonatal erythropoiesis, Ann. N. Y. Acad. Sci., 1968, vol. 149, pp. 544–559.CrossRefGoogle Scholar
  25. 25.
    Mogey, G.A. and Young, P.A., The antagonism of curarizing activity by phenolic substances, Brit. J. Pharmacol., 1949, vol. 4, pp. 359–365.Google Scholar
  26. 26.
    Prokofieva, D.S., Voitenko, N.G., Gustyleva, L.K., Babakov, V.N., Savelieva, E.I., Jenkins, R.O., and Goncharov, N.V., Microplate spectroscopic methods for determination of the organophosphate soman, J. Environ. Monit., 2010, vol. 12, pp. 1349–1354.CrossRefGoogle Scholar
  27. 27.
    Prokofieva, D.S., Jenkins, R.O., and Goncharov, N.V., Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results, Analyt. Biochem., 2012, vol. 424, no. 2, pp. 108–113.CrossRefGoogle Scholar
  28. 28.
    Bakker, A.J., Lamb, G.D., and Stephenson, D.G., The effect of 2,5-di-(tert-butyl)-1,4-hydroquinone on force responses and the contractile apparatus in mechanically skinned muscle fibres of the rat and toad, J. Muscle Res. Cell Motil., 1996, vol. 17, no. 1, pp. 55–67.CrossRefGoogle Scholar
  29. 29.
    Lape, M., Elam, C., Versluis, M., Kempton, R., and Paula, S., Molecular determinants of sarco/endoplasmic reticulum calcium ATPase inhibition by hydroquinone-based compounds, Prot. Struct. Funct. Bioinform., 2008, vol. 70, pp. 639–649.CrossRefGoogle Scholar
  30. 30.
    Paula, S., Elam, C., Woeste, M., Abell, J., and Kempton, R.J., Hydroquinones with conformationally constrained substituents: synthesis, characterization, and evaluation as calcium-ATPase inhibitors, Int. J. Biosci. Biochem. Bioinform., 2013, vol. 3, no. 5, p. 535.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. A. Terpilovskii
    • 1
    Email author
  • S. V. Kuznetsov
    • 1
  • N. V. Goncharov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations