Journal of Evolutionary Biochemistry and Physiology

, Volume 54, Issue 5, pp 400–407 | Cite as

Role of Potassium Channels in the Effects of Hydrogen Sulfide on Contractility of Gastric Smooth Muscle Cells in Rats

  • I. F. Shaidullov
  • M. U. Shafigullin
  • L. M. Gabitova
  • F. G. Sitdikov
  • A. L. Zefirov
  • G. F. SitdikovaEmail author
Comparative and Ontogenic Physiology


The effect of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, on spontaneous contractile activity of rat gastric smooth muscle cells was analyzed. Experiments were conducted on gastric stripes under conditions of isometric contraction. It was shown that NaHS has a biphasic effect on spontaneous contractile activity, increasing tonic tension and the amplitude of phasic contractions within the first minutes since application. This initial phase is followed by a decrease in amplitude, basal tone, and frequency of spontaneous contractions. The inhibitory effect of NaHS was dose-dependent at concentrations from 10 to 600 μM. Preliminary application of tetraethylammonium and 4-aminopirydine, inhibitors of voltage-gated and calciumactivated potassium channels, prevented a NaHS-induced initial increase in basal tone and phasic contraction amplitude. Activation of ATP-dependent potassium channels (KATP-channels) by diazoxide prevented in part a NaHS-induced decrease in basal tone and amplitude of spontaneous contractions. Glibenclamide, an inhibitor of KATP-channels, decreased the inhibitory effect of NaHS on amplitude, basal tone and frequency of spontaneous contractions. It was concluded that in rat gastric smooth muscles the excitatory effect of H2S is mediated by the inhibition of voltagegated and calcium-activated potassium channels, while its inhibitory effect involves the activation of KATP-channels.

Key words

rat gastric smooth muscle cells hydrogen disulfide contractility voltage-gated and calcium-activated potassium channels ATP-dependent potassium channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sitdikova, G.F. and Zefirov, A.L., Gaseous mediators in the nervous system, Ross. Fiziol. Zh., 2006, vol. 92, no. 7, pp. 872–882.Google Scholar
  2. 2.
    Sitdikova, G.F., Yakovlev, A.V., and Zefirov, A.L., Gaseous mediators: from toxic effects to regulation of cell functions and clinical use, Byull. Sib. Med., 2014, vol. 13, no. 6, pp. 185–200.Google Scholar
  3. 3.
    Linden, D.R., Hydrogen sulfide signaling in the gastrointestinal tract, Antioxid. Redox Signal., 2014, vol. 20, no. 5, pp. 818–830.CrossRefGoogle Scholar
  4. 4.
    Farrugia, G. and Szurszewski, J.H., Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract, Gastroenterol., 2014, vol. 147, no. 2, pp. 303–313.CrossRefGoogle Scholar
  5. 5.
    Gerasimova, E., Lebedeva, J., Yakovlev, A., Zefirov, A., Giniatullin, R., and Sitdikova, G., Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction, Neurosci., 2015, vol. 303, pp. 577–585.CrossRefGoogle Scholar
  6. 6.
    Yakovlev, A.V., Kurmasheva, E.D., Giniatullin, R., Khalilov, I., and Sitdikova, G.F., Hydrogen sulfide inhibits giant depolarizing potentials and abolishes epileptiform activity of neonatal rat hippocampal slices, Neurosci., 2017, vol. 340, pp. 153–165.CrossRefGoogle Scholar
  7. 7.
    Martin, G.R., McKnight, G.W., Dicay, M.S., Coffin, C.S., Ferraz, J.G., and Wallace, J.L., Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract, Digest. Liver Dis., 2010, vol. 42, no. 2, pp. 103–109.CrossRefGoogle Scholar
  8. 8.
    Huang, X., Meng, X.M., Liu, D.H., Wu, Y.S., Guo, X., Lu, H.L., Kim, Y.C., and Xu, W.X., Different regulatory effects of hydrogen sulfide and nitric oxide on gastric motility in mice, Eur. J. Pharmacol., 2013, vol. 720, no. 1, pp. 276–285.CrossRefGoogle Scholar
  9. 9.
    Meng, X.M., Huang, X., Zhang, C.M., Liu, D.H., Lu, H.L., Kim, Y.C., and Xu, W.X., Hydrogen sulfide-induced enhancement of gastric fundus smooth muscle tone is mediated by voltage-dependent potassium and calcium channels in mice, World J. Gastroenterol., 2015, vol. 21, no. 16, p. 4840.CrossRefGoogle Scholar
  10. 10.
    Wallace, J.L., Caliendo, G., Santagada, V., and Cirino, G., Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346), Brit. J. Pharmacol., 2010, vol. 159, no. 6, pp. 1236–1246.CrossRefGoogle Scholar
  11. 11.
    Gallego, D., Clave, P., Donovan, J., Rahmati, R., Grundy, D., Jimenez, M., and Beyak, M.J., The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum, Neurogastroenterol. Motil., 2008, vol. 20, pp. 1306–1316.CrossRefGoogle Scholar
  12. 12.
    Shafigullin, M.Y., Zefirov, R.A., Sabirullina, G.I., Zefirov, A.L., and Sitdikova, G.F., Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum, Bull. Exp. Biol. Med., 2014, vol. 157, no. 3, pp. 302–306.CrossRefGoogle Scholar
  13. 13.
    Gabitova, D.M., Shaidullov, I.F., Sabirullina, G.I., Shafigullin, M.U., Sitdikov, F.G., and Sitdikova, G.F., Role of cyclic nucleotides in the effect of hydrogen sulfide on contractions of rat jejunum, Bull. Exp. Biol. Med., 2017, vol. 163, no. 1, pp. 14–17.CrossRefGoogle Scholar
  14. 14.
    Medeiros, J.V.R., Bezerra, V.H., Lucetti, L.T., Lima-Júnior, R.C.P., Barbosa, A.L.R., Tavares, B.M., Magalhães, P.J.C., Santos, A.A., Cunha, F.Q., Soares, P.M.G., and Souza, M.H., Role of KATP channels and TRPV1 receptors in hydrogen sulfide-enhanced gastric emptying of liquid in awake mice, Eur. J. Pharmacol., 2012, vol. 693, no. 1, pp. 57–63.CrossRefGoogle Scholar
  15. 15.
    Xiao, A., Wang, H., Lu, X., Zhu, J., Huang, D., Xu, T., Guo, J., Liu, C., and Li, J., H2S, a novel gasotransmitter, involves in gastric accommodation, Sci. Rep., 2015, vol.5.Google Scholar
  16. 16.
    DeLeon, E.R., Stoy, G.F., and Olson, K.R., Passive loss of hydrogen sulfide in biological experiments, Anal. Biochem., 2012, vol. 421, no. 1, pp. 203–207.CrossRefGoogle Scholar
  17. 17.
    Sitdikova, G.F., Fuchs, R., Kainz, V., Weiger, T.M., and Hermann, A., Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S), Front. Physiol., 2014, vol. 5, p.431.CrossRefGoogle Scholar
  18. 18.
    Furne, J., Saeed, A., and Levitt, M.D., Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values, Am. J. Physiol. Reg. Integr. Comp. Physiol., 2008, vol. 295, no. 5, pp. R1479–R1485.CrossRefGoogle Scholar
  19. 19.
    Zhao, P., Huang, X., Wang, Z.Y., Qiu, Z.X., Han, Y.F., Lu, H.L., Kim, Y.C., and Xu, W.X., Dual effect of exogenous hydrogen sulfide on the spontaneous contraction of gastric smooth muscle in guinea-pig, Eur. J. Pharmacol., 2009, vol. 616, no. 1, pp. 223–228.CrossRefGoogle Scholar
  20. 20.
    Han, Y.F., Huang, X., Guo, X., Wu, Y.S., Liu, D.H., Lu, H.L., Kim, Y.C., and Xu, W.X., Evidence that endogenous hydrogen sulfide exerts an excitatory effect on gastric motility in mice, Eur. J. Pharmacol., 2011, vol. 673, no. 1, pp. 85–95.CrossRefGoogle Scholar
  21. 21.
    Sitdikova, G.F., Weiger, T.M., and Hermann, A., Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells, Pflügers Arch. Eur. J. Physiol., 2010, vol. 459, no. 3, pp. 389–397.CrossRefGoogle Scholar
  22. 22.
    Mustafina, A.N., Yakovlev, A.V., Gaifullina, A.S., Weiger, T.M., Hermann, A., and Sitdikova, G.F., Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells, Biochem. Biophys. Res. Commun., 2015, vol. 465, no. 4, pp. 825–831.CrossRefGoogle Scholar
  23. 23.
    Dhaese, I. and Lefebvre, R.A., Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus, Eur. J. Pharmacol., 2009, vol. 606, no. 1, pp. 180–186.CrossRefGoogle Scholar
  24. 24.
    Nalli, A.D., Rajagopal, S., Mahavadi, S., Grider, J.R., and Murthy, K.S., Inhibition of RhoA-dependent pathway and contraction by endogenous hydrogen sulfide in rabbit gastric smooth muscle cells, Am. J. Physiol. Cell Physiol., 2015, vol. 308, no. 6, pp. 485–495.CrossRefGoogle Scholar
  25. 25.
    Vogalis, F., Potassium channels in gastrointestinal smooth muscle, J. Auton. Pharmacol., 2000, vol. 20, no. 4, pp. 207–219.CrossRefGoogle Scholar
  26. 26.
    Lee, J.Y., Ko, E.J., Ahn, K.D., Kim, S., and Rhee, P.L., The role of K+ conductances in regulating membrane excitability in human gastric corpus smooth muscle, Am. J. Physiol. Gastrointest. Liver Physiol., 2015, vol. 308, no. 7, pp. G625–G633.CrossRefGoogle Scholar
  27. 27.
    Zhao, W., Zhang, J., Lu, Y., and Wang, R., The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener, EMBO J., 2001, vol. 20, no. 21, pp. 6008–6016.CrossRefGoogle Scholar
  28. 28.
    Blair, P.J., Rhee, P.L., Sanders, K.M., and Ward, S.M., The significance of interstitial cells in neurogastroenterology, J. Neurogastroenterol. Motil., 2014, vol. 20, no. 3, pp. 294–317.CrossRefGoogle Scholar
  29. 29.
    Parajuli, S.P., Choi, S., Lee, J., Kim, Y.D., Park, C.G., Kim, M.Y., Kim, H.I., Yeum, C.H., and Jun, J.Y., The inhibitory effects of hydrogen sulfide on pacemaker activity of interstitial cells of ?ajal from mouse small intestine, Korean J. Physiol. Pharmacol., 2010, vol. 14, no. 2, pp. 83–89.CrossRefGoogle Scholar
  30. 30.
    Mustafa, A.K., Sikka, G., Gazi, S.K., Steppan, J., Jung, S.M., Bhunia, A.K., and Amzel, L.M., Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels novelty and significance, Circ. Res., 2011, vol. 109, no. 11, pp. 1259–1268.CrossRefGoogle Scholar
  31. 31.
    Dorman, D.C., Moulin, F.J.M., McManus, B.E., Mahle, K.C., James, R.A., and Struve, M.F., Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium, Toxicol. Sci., 2002, vol. 65, no. 1, pp. 18–25.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. F. Shaidullov
    • 1
  • M. U. Shafigullin
    • 1
  • L. M. Gabitova
    • 1
  • F. G. Sitdikov
    • 1
  • A. L. Zefirov
    • 2
  • G. F. Sitdikova
    • 1
    Email author
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Kazan State Medical UniversityKazanRussia

Personalised recommendations