Journal of Evolutionary Biochemistry and Physiology

, Volume 54, Issue 5, pp 390–399 | Cite as

Effects of Hypoxia, Hyperbaria and Hyposmosis on Ecto- ATPase Activity in Scorpionfish (Scorpaena porcus L.) Erythrocytes

  • Yu. A. SilkinEmail author
  • E. N. Silkina
  • A. Ya. Stolbov
  • M. Yu. Silkin
Comparative and Ontogenic Physiology


Effects of hypoxic, hyperbaric and hyposmotic exposures on activity of erythrocyte membrane-bound ecto-ATPase were studied in the scorpionfish Scorpaena porcus L. One-hour autogenic hypoxia evoked a drop while longer hypoxia (12, 24 h)–a rise in the enzyme activity. Hyperbaric exposure, irrespective of its duration, evoked the same stimulation of ecto-ATPase activity in vivo. In vitro, instead, hydrostatic pressure caused a significant drop in the enzyme activity. Hyposmosis stimulated ecto-ATPase activity when the medium was diluted to 50% of its basal level, however, a stronger dilution (70%) led to its inhibition. Under hypoxia, changes in ecto-ATPase activity of scorpionfish erythrocytes are, most likely, due to a shift in the hormonal background and the plasma acid–base equilibrium. The reasons behind the activation of erythrocyte ecto-ATPase in response to hyperbaric pressure are obscure. Under in vitro conditions, the direct effect of hyperbaria and hyposmosis on scorpionfish erythrocytes may be due to alterations in characteristics of plasma membrane microviscosity and in the ecto-ATPase conformational state as manifested in fluctuations of enzyme activity during experiments.

Key words

fish erythrocytes ecto-ATPase hypoxia hyperbaria hyposmosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zimmermann, H., Zebisch, M., and Sträter, N., Cellular function and molecular structure of ecto-nucleotidases, Purinerg. Signal., 2012, vol. 8, pp. 437–502.CrossRefGoogle Scholar
  2. 2.
    Bencic, D.C., Yates, T.J., and Ingermann, R.L., Ecto-ATPase activity of vertebrate blood cells, Physiol. Zool., 1997, vol. 70, no. 6, pp. 621–630.CrossRefGoogle Scholar
  3. 3.
    Silkin, Yu.A. and Silkina, E.N., Mg2+-dependent ecto-ATPase in the plasma membrane of scorpionfish (Scorpaena porcus L.) erythrocyte membrane. Biochemical properties and some kinetic characteristics, Zh. Evol. Biokhim. Fiziol., 2000, vol. 36, no. 5, pp. 401–405.Google Scholar
  4. 4.
    Luneva, O.G., Sidorenko, S.V., Maksimov, G., Grygorczyk, R., and Orlov, S.N., Erythrocytes as regulator of blood vessel tone, Biochem. (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2015, vol. 9, no. 3, pp. 161–171.CrossRefGoogle Scholar
  5. 5.
    Jensen, F.B., Agnisola, C., and Novak, I., ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout, Comp. Biochem. Physiol. A, 2009, vol. 152, pp. 351–356.CrossRefGoogle Scholar
  6. 6.
    Panin, L.E., Mokrushnikov, P.V., Kunitsyn, V.G., and Zaitsev, B.N., Interaction mechanism of anabolic steroid hormones with structural components of erythrocyte membranes, J. Phys. Chem. B, 2011, vol. 115, pp. 1469–1479.CrossRefGoogle Scholar
  7. 7.
    Kazennov, A.M., Maslova, M.N., and Savina, M.N., Comparative characterization of Na+, K+-ATPase in human and carp Cyprinus carpio erythrocytes, Zh. Evol. Biokhim. Fiziol., 1984, vol. 20, no. 2, pp. 167–173.Google Scholar
  8. 8.
    Muravyov, A. V. and Cheporov, S.V., Gemoreologiya, eksperimentalnye i klinicheskie aspekty reologii krovi (Hemorheology, Experimental and Clinical, Aspects of Blood Rheology), Yaroslavl, 2009.Google Scholar
  9. 9.
    Borovskaya, M.K., Kuznetsova, E.E., Gorokhova, V.G., Koryakina, L.B., Kurilskaya, T.E., and Pivovarov, Yu.N., Structural and functional characteristics of erythrocyte membrane and its alterations under pathologies of diverse genesis, Byull. VSNTs SO RAMN, 2010, no. 3 (73), pp. 334–354.Google Scholar
  10. 10.
    Hochachka, P. and Somero, G., Biokhimicheskaya adaptatsiya (Biochemical Adaptation), Moscow, 1988.Google Scholar
  11. 11.
    Nikinmaa, M., Chech, J., Ryhanen, E.-L., and Salama, A., Red cell function of carp (Cyprinus carpio) in acute hypoxia, Exp. Biol., 1987, vol. 47, pp. 53–58.Google Scholar
  12. 12.
    Shepotinovskiy, V.I., Metabolic processes in erythrocytes under stress and experimental exposures, Pat. Fiziol. Eksper. Terap., 1984, iss. 2, pp. 70–74.Google Scholar
  13. 13.
    Matyushichev, V.B. and Shamratova, V.G., Dependence of electrophoretic mobility of erythrocytes on the state of the blood acid–base equilibrium, Vestn. SPbGU, 2005, ser. 3, iss. 1, pp. 98–102.Google Scholar
  14. 14.
    Mokrushnikov, P.V., Panin, L.E., and Zaitsev, B.N., The action of stress hormones on the structure and function of erythrocyte membrane, Gen. Physiol. Biophys., 2015, vol. 34, pp. 311–321.Google Scholar
  15. 15.
    Casillas, E., Smith, L.S., Woodward, J.J., and D’Aoust, B.G., Hematologic response of fish in gas or hydrostatic pressure, Am. J. Physiol., 1980, vol. 239 (1), pp. 161–167.Google Scholar
  16. 16.
    Silkin, Yu.A. and Silkina, E.N., Role of ecto-ATPase of erythrocyte plasma membranes in hemodynamics of fishes, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 1, pp. 69–84.CrossRefGoogle Scholar
  17. 17.
    Plesner, L., Ecto-ATPases: identities and functions, Int. Rev. Cytol., 1995, vol. 158, pp. 141–214.CrossRefGoogle Scholar
  18. 18.
    Milyutina, I.P., Ananyan, A.A., Sapozhnikov, V.M., Novikova, E.I., Kostkin, V.B., and Dashevskiy, B.S., Influence of long-term hypaerbaria on activity of lipid peroxidation and structural–functional state of erythrocytes, Byull. Eksper. Biol. Med., 1992, no. 5, pp. 474–476.Google Scholar
  19. 19.
    Barshtein, G., Bergelson, L., Dagan, A., Gratton, E., and Yedgar, S., Membrane lipid order of human red blood cells is altered by physiological levels of hydrostatic pressure, Am. J. Physiol., 1997, vol. 272, pp. H538–H543.Google Scholar
  20. 20.
    Lenaz, G., Lipid fluidity and membrane protein dynamics, Biosci. Rep., 1987, vol. 7, no. 11, pp. 823–837.CrossRefGoogle Scholar
  21. 21.
    Grinthal, A. and Guidotti, G., Transmembrane domains confer different substrate specificities and adenosine diphosphate hydrolysis mechanisms on CD39, CD39L1, and chimeras, Biochem., 2002, vol. 41, pp. 1947–1956.CrossRefGoogle Scholar
  22. 22.
    Penniston, J.T., High hydrostatic pressure and enzymic activity: inhibition of multimeric enzymes by dissociation, Arch. Biochem. Biophys., 1971, vol. 142 (1), pp. 322–332.CrossRefGoogle Scholar
  23. 23.
    Coelho-Sampaio, T., Ferreira, S.T., Benaim, G., and Vieyra, A., Dissociation of purified erythrocyte Ca2+-ATPase by hydrostatic pressure, J. Biol. Chem., 1991, vol. 266, no. 33, pp. 22266–22272.Google Scholar
  24. 24.
    Golovko, S.I., Comparative characteristics of the membrane reserve in nucleated blood cells of vertebrates, Candidate Sci. Diss., Yaroslavl, 2010.Google Scholar
  25. 25.
    Kalyagina, N.V., Martynov, M.V., and Ataullakhanov, F.I., Mathematical analysis of human blood cell volume regulation with regard to the elastic effect of erythrocyte shell on metabolic processes, Biochem. (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2013, vol. 7, no. 2, pp. 122–133.CrossRefGoogle Scholar
  26. 26.
    Schindler, M., Koppel, D.E., and Sheetz, M.P., Modulation of membrane protein lateral mobility by polyphosphates and polyamines, Proc. Natl. Acad. Sci. USA, 1980, vol. 77, no. 3, pp. 1457–1461.CrossRefGoogle Scholar
  27. 27.
    Gerasimovskaya, E. and Kaczmarek, E., Extracellular ATP and adenosine as regulators of endothelial cells function. Implication for health and disease, Springer Science & Business Media B.V., 2010.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. A. Silkin
    • 1
    Email author
  • E. N. Silkina
    • 1
  • A. Ya. Stolbov
    • 2
  • M. Yu. Silkin
    • 1
  1. 1.T. I. Vyazemsky Karadag Scientific Station (Karadag Nature Reserve)Russian Academy of SciencesFeodosiaRussia
  2. 2.Institute of Natural and Technical SystemsSevastopolRussia

Personalised recommendations