Advertisement

Journal of Evolutionary Biochemistry and Physiology

, Volume 54, Issue 5, pp 363–373 | Cite as

Activation of Multimodal Areas in the Human Cerebral Cortex in Response to Biological Motion Sounds

  • I. G. Andreeva
  • V. A. Orlov
  • V. L. Ushakov
Comparative and Ontogenic Physiology

Abstract

Functional magnetic resonance imaging (fMRI) was used to investigate activation of the multimodal areas in the cerebral cortex–supramarginal and angular gyri, precuneus, and middle temporal visual cortex (MT/V5)–in response to motion of biologically significant sounds (human footsteps). The subjects listened to approaching or receding footstep sounds during 45 s, and such stimulation was supposed to evoke auditory adaptation to biological motion. Listening conditions alternated with stimulation-free control. To reveal activity in the regions of interest, the periods before and during stimulation were compared. Most stable and voluminous activation was detected in the supramarginal and angular gyri, being registered for all footstep sound types–approaching, receding and steps in place. Listening to human approaching steps activated the precuneus area, with the volume of activation clusters varying considerably between subjects. In the MT/V5 area, activation was revealed in 5 of 21 subjects. The involvement of the tested multimodal cortical areas in analyzing biological motion is discussed.

Key words

spatial orientation multisensory interaction motion perception biologically significant signals multimodal cortical areas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johansson, G., Visual perception of biological motion and model of its analysis, Percept. Psychophys., 1973, vol. 14, pp. 201–211.CrossRefGoogle Scholar
  2. 2.
    Bidet-Caulet, A., Voisin, J., Bertrand, O., and Fonlupt, P., Listening to a walking human activates the temporal biological motion area, Neuroimage, 2005, vol. 28, no. 1, pp. 132–139.CrossRefGoogle Scholar
  3. 3.
    Grezes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., and Decety, J., Does perception of biological motion rely on specific brain regions? Neuroimage, 2001, vol. 13, pp. 775–785.CrossRefGoogle Scholar
  4. 4.
    Mills, A.W., On the minimum audible angle, J. Acoust. Soc. Amer., 1958, vol. 30, no. 4, pp. 237–246.CrossRefGoogle Scholar
  5. 5.
    Altman, Ya.A., Prostranstvennyi slukh (Spatial Hearing), St. Petersburg, 2011.Google Scholar
  6. 6.
    Ahveninen, J., Kopco, N., and Jääskeläinen, I.P., Psychophysics and neuronal bases of sound localization in humans, Hear. Res., 2014, pp. 86–97.Google Scholar
  7. 7.
    Pavani, F., Macaluso, E., Warren, J.D., Driver, J., and Griffiths, T.D., A common cortical substrate activated by horizontal and vertical sound movement in the human brain, Curr. Biol., 2002, vol. 12, no. 18, pp. 1584–1590.CrossRefGoogle Scholar
  8. 8.
    Kopco, N., Huang, S., Belliveau, J., Raij, T., Tengshe, C., and Ahveninen, J., Neuronal representations of distance in human auditory cortex, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 27, pp. 11019–11024.CrossRefGoogle Scholar
  9. 9.
    Boccia, M., Nemmi, F., and Guariglia, C., Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants, Neuropsychol. Rev., 2014, vol. 24, no. 2, pp. 236–251.CrossRefGoogle Scholar
  10. 10.
    Taylor, J.G., Schmitz, N., Ziemons, K., Grosse-Ruyken, M.L., Gruber, O., Mueller-Gaertner, H.W., and Shah, N.J., The network of brain areas involved in the motion aftereffect, Neuroimage, 2000, vol. 11, pp. 257–270.CrossRefGoogle Scholar
  11. 11.
    Warren, J.D., Zielinski, B.A., Green, G.G.R., Rauschecker, J.P., and Griffiths, T.D., Perception of sound-source motion by the human brain, Neuron, 2002, vol. 34, pp. 139–148.CrossRefGoogle Scholar
  12. 12.
    Xiang, J., Chuang, S., Wilson, D., Otsubo, H., Pang, E., Holowka, S., Sharma, R., Ochi, A., and Chitoku, S., Sound motion evoked magnetic fields, Clin. Neurophysiol., 2002, vol. 113, no. 1, pp. 1–9.CrossRefGoogle Scholar
  13. 13.
    Statistical Parametric Mapping: The Analysis of Functional Brain Images, Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., and Penny, W.D., Eds., Academic Press, 2007.Google Scholar
  14. 14.
    Kozhevnikova, E.V., Assessment of a looming and receding source of natural sound signals, Fiziol. Zh. SSSR, 1987, vol. 73, no. 4, pp. 454–459.Google Scholar
  15. 15.
    Kozhevnikova, E.V., Perception of approaching and receding step sounds. Conditions of the perceptual motion effect emergence, Sens. Sist., 1989, vol. 3, no. 1, pp. 93–100.Google Scholar
  16. 16.
    Väljamäe, A., Auditorily-induced illusory selfmotion: a review, Brain Res. Rev., 2009, vol. 61, pp. 240–255.CrossRefGoogle Scholar
  17. 17.
    Andreeva, I.G., Auditory adaptation to motion: an intersensory aspect, Sens. Sist., 2017, vol. 31, no. 2, pp. 103–115.Google Scholar
  18. 18.
    Gerasimenko, Y., Kozlovskaya, I., and Edgerton, V.R., Sensorimotor regulation of movements: novel strategies for the recovery of mobility, Human Physiol., 2016, vol. 42, no. 1, pp. 3–12.CrossRefGoogle Scholar
  19. 19.
    Andreeva, I.G., Bobrova, E.V., Antifeev, I.E., and Gvozdeva, A.P., Aftereffects of approaching and receding sound sources on postural responses in humans, Neurosci. Behav. Physiol., 2018, vol. 48, no. 1, pp. 45–53.CrossRefGoogle Scholar
  20. 20.
    Camponogara, I., Turchet, L., Carner, M., Marchioni, D., and Cesari, P., To hear or not to hear: sound availability modulates sensory–motor integration, Front. Neurosci., 2016, pp. 10–22.Google Scholar
  21. 21.
    Turchet, L., Camponogara, I., and Cesari, P., Interactive footstep sounds modulate the perceptual–motor aftereffect of treadmill walking, Exp. Brain Res., 2015, vol. 233, no. 1, pp. 205–214.CrossRefGoogle Scholar
  22. 22.
    Kremneva, E.I., Chernikova, L.A., Konovalov, R.N., Krotenkova, M.V., Saenko, I.V., and Kozlovskaya, I.B., Activation of sensorimotor cortex using a device for mechanical stimulation of the plantar support zones, Human Physiol., 2012, vol. 38, no. 1, pp. 49–55.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations