Journal of Evolutionary Biochemistry and Physiology

, Volume 54, Issue 5, pp 345–352 | Cite as

Monoamine Oxidase Activity in the Hepatopancreas of the Kamchatka Crab Paralithodes camtschaticus: a Substrate–Inhibitor Specificity

  • N. E. BasovaEmail author
  • I. N. Basova
  • O. V. Yagodina
Comparative and Ontogenic Biochemistry


A study of substrate–inhibitor specificity of mitochondrial monoamine oxidase (MAO) in the hepatopancreas of the adult Kamchatka crab Paralithodes camtschaticus revealed specific catalytic properties of the enzyme. On the one hand, crab hepatopancreas MAO, like its classical hepatic counterpart, can deaminate tyramine, tryptamine, dopamine, serotonin, noradrenalin, benzylamine, β-phenylethylamine and N-methylhistamine but shows no sensitivity to 10 mM semicarbazide. On the other hand, MAO deaminates histamine but not putrescine, two classical diamine oxidase (DAO) substrates. It was established that MAO activity was several times higher toward benzylamine, β-phenylethylamine and N-methylhistamine than toward serotonin and noradrenalin. MAO was also found to be almost 500 times more sensitive to its selective inhibitor deprenyl than to chlorogilyn. A substrate–inhibitory analysis with the use of deprenyl and chloroginyl provides an indirect evidence for the existence of a sole MAO molecular form in the Kamchatka crab hepatopancreas.

Key words

monoamine oxidase hepatopancreas Kamchatka crab 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorkin, V.Z., Aminoksidazy i ikh znachenie v meditsine (Amine Oxidases and their Significance in Medicine), Moscow, 1981.Google Scholar
  2. 2.
    Edmondson, D.E., Binda, C., Wang, J., Upadhyay, A.K., and Mattevi, A., Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases, Biochem., 2009, vol. 48, pp. 4220–4230.CrossRefGoogle Scholar
  3. 3.
    Blaschko, H. and Hope, D.B., Observations on the distribution of amine oxidase in inverterbrates, Arch. Biochem., 1957, vol. 69, pp. 10–15.CrossRefGoogle Scholar
  4. 4.
    Blaschko, H., The natural history of amine oxidases, Rev. Physiol. Biochem. Pharmacol., 1974, vol. 70, pp. 83–148.CrossRefGoogle Scholar
  5. 5.
    Nicotra, A. and Naccarato, M.C., Monoamine oxidase activity in Paracentrotus lividus sperm cells, Int. J. Invertebr. Reprod., 1982, vol. 5, pp. 101–105.CrossRefGoogle Scholar
  6. 6.
    Nicotra, A., A radiochemical evaluation of monoamine oxidase activity towards serotonin in sea urchin eggs and embryos, Int. J. Invertebr. Reprod., 1982, vol. 5, pp. 283–288.CrossRefGoogle Scholar
  7. 7.
    Nicotra, A., Serafino, A.L., and Senatori, O., Monoamine oxidase activity in tissue of starfish Maryhasterias glacialis, Comp. Biochem. Physiol., 1986, vol. 84C, pp. 195–197.Google Scholar
  8. 8.
    Nicotra, A., Senatori, O., and Santangelo, G., Monoamine oxidase activity in hepatopancreas of Octopus vulgaris, Comp. Biochem. Physiol. C, 1993, vol. 106, pp. 479–482.CrossRefGoogle Scholar
  9. 9.
    Basova, N.E. and Yagodina, O.V., Substrate–inhibitory analysis of monoamine oxidase in hepatopancreas of the octopus Bathypolypus arcticus, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, pp. 342–348.Google Scholar
  10. 10.
    Boadle, M.C., Observations on a histaminase of invertebrate origin: a contribution to the study of cephalopod amine oxidases, Comp. Biochem. Physiol., 1969, vol. 30, pp. 611–620.CrossRefGoogle Scholar
  11. 11.
    Yagodina, O.V. and Basova, N.E., A comparative study of catalytic properties of hepatic monoamine oxidase in the squid Todarodes pacificus and Wistar rats, Zh. Evol. Biochim. Physiol., 2001, vol. 37, pp. 175–179.Google Scholar
  12. 12.
    Yagodina, O.V., Catalytic properties of hepatic monoamine oxidases in individuals of the Commodore squid Berryteuthis magister from different habitats, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 385–390.Google Scholar
  13. 13.
    Fingerman, M., Schultz, R.E., Bordlee, B.P., and Dalton, D.P., Twenty-four-hour variation of 5-hydroxytryptophan decarboxylase and monoamine oxidase activities in the eyestalks of the fiddler crab Uca pugilator, Comp. Biochem. Physiol C, 1978, vol. 61, pp. 171–175.CrossRefGoogle Scholar
  14. 14.
    Rodin, V.E., Slizkin, A.G., Myasoedov, V.I., Barsukov, V.N., Miroshnikov, V.V., Zgurovsky, K.A., Kanarskaya, O.A., and Fedoseev, V.Ya., Rukovodstvo po izucheniyu desyatinogikh rakoobraznykh Decapoda dalnevostochykh morei (Handbook for Studying Decapod Crustaceans of the Far East Seas), Vladivostok, 1979.Google Scholar
  15. 15.
    Sokolov, V.I. and Milyutin, D.M., Distribution, abundance and dimensional composition of the Kamchatka crab Paralithodes camtschaticus in the upper sublithoral of the Kola Peninsula of the Barents Sea in the summer period, Zool. Zh., 2006, vol. 85, pp. 158–170.Google Scholar
  16. 16.
    Severina, I.S., On the putative mechanism of selective inhibition by chlorgyline and deprenyl of mitochondrial monoamine oxidase activity in the rat liver, Biokhim., 1979, vol. 44, pp. 195–204.Google Scholar
  17. 17.
    Cornish-Bowden, E., Osnovy fermentativnoi kinetiki (The Fundamentals of Enzymatic Kinetics), Moscow, 1979.Google Scholar
  18. 18.
    Moralev, S.N. and Rozengart, E.V., Comparative Enzymology of Cholinesterases, Int. Univ. Lines, Biotechnology Series, no. 6, La Jolla, 2007.Google Scholar
  19. 19.
    Slizkin, A.G. and Safronov, S.G., Promyslovye kraby prikamchatskikh vod (Commercial-Catch Crabs in Near-Kamchatka Waters), Petropavlovsk-Kamchatsky, 2000.Google Scholar
  20. 20.
    Yagodina, O.V. and Basova, N.E., Monoamine oxidase activity in the liver of the lamprey Lampetra fluviatilis, a substrate–inhibitor specificity, Zh. Evol. Biokhim. Fiziol., 2013, vol. 49, pp. 39–43.Google Scholar
  21. 21.
    Yagodina, O.V. and Basova, N.E., A comparative enzymological study of catalytic properties of monoamine oxidases in the sturgeon liver, Zh. Evol. Biokhim. Fiziol., 2013, vol. 49, pp. 203–210.Google Scholar
  22. 22.
    Hall, T.R. and Uruena, G., Pharmacology and phisiology of monoamine oxidase activity in vertebrates, a comparative study, Comp. Biochem. Physiol. B, 1983, vol. 76, pp. 393–397.CrossRefGoogle Scholar
  23. 23.
    Orlov, Yu.I. and Ivanov, B.G., On the introduction of the Kamchatka king crab Paralithodes camtschatica (Decapoda: Anomura: Lithodidae) into the Barents Sea, Marine Biol., 1978, vol. 48, pp. 373–375.CrossRefGoogle Scholar
  24. 24.
    Zelenina, D.A., Myuge, N.S., Volkov, A.A., and Sokolov, V.I., The Kamchatka crab (Paralithodes camtschaticus) in the Barents Sea: a comparative study of introduced and native populations, Genetika, 2008, vol. 44, pp. 983–991.Google Scholar
  25. 25.
    Gorkin, V.Z., Transformation of enzymes, Mol. Biol., 1976, vol. 10, pp. 717–735.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations