Free Amino Acid Profile in Blood Plasma of Bats (Myotis dasycneme Boie, 1825) Exposed to Low Positive and Near-Zero Temperatures

  • L. A. KovalchukEmail author
  • V. A. Mishchenko
  • N. V. Mikshevich
  • L. V. Chernaya
  • M. V. Chibiryak
  • A. P. Yastrebov
Comparative and Ontogenic Biochemistry


We analyze here for the first time the plasma free amino acid profile in pond bats (Myotis dasycneme Boie, 1825) living in the boreal Ural region and exposed experimentally to low positive and near-zero temperatures during their preparation for hibernation. Pond bats were caught in their mass habitation territory in the Middle Ural near the Smolinsky cave (N 56°28’, E 61°37’) in the third decade of September 2015. Qualitatively, blood plasma in pond bats contains 21 amino acids. In a model experiment carried out on pre-hibernating animals at a regular hibernation temperature (0–2°C), the total plasma pool of free amino acids increased significantly by 42% (irrespective of sex) and reached 1561.4 ± 112.6 μmol/L (p = 0.01). Under these experimental conditions, the fraction of glucogenic amino acids rose by 34% (p = 0.01) and that of essential ones by 80% (p = 0.001). Both in control and experimentally cooled pre-hibernating animals, the plasma was found to lack tryptophan, suggesting its utilization as a substrate in the synthesis of serotonin, a biogenic amine directly involved in the maintenance of hypothermia and hypometabolism in these chiropterans.

Key words

bats amino acids blood hibernation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ekologicheskaya fiziologiya zhivotnykh, Chast’ 1, Obshchaya ekologicheskaya fiziologiya i fiziologiya adaptatsii (Ecological Physiology of Animals, Pt. 1, General Ecological Physiology and Physiology of Adaptations), Slonim, A.D., Ed., Leningrad, 1979.Google Scholar
  2. 2.
    Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution, New York, 2002.Google Scholar
  3. 3.
    Blanco, M.A. and Sherman, P.W., Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging, Mech. Ageing Dev., 2005, vol. 126, pp. 794–803. doi:10.1016/j. mad.2005.02.006CrossRefPubMedGoogle Scholar
  4. 4.
    Turbill, C., Bieber, C., and Ruf, T., Hibernation is associated with increased survival and the evolution of slow life histories among mammals, Proc. R. Soc. B, 2011, vol. 278, pp. 3355–3363. doi:10.1098/rspb.2011.0190CrossRefPubMedGoogle Scholar
  5. 5.
    Geiser, F., Westman, W., McAllan, B.M., and Brigham, R.M., Development of thermoregulation and torpor in a marsupial: energetic and evolutionary implications, J. Comp. Physiol. B, 2006, vol. 176, pp. 107–116.CrossRefPubMedGoogle Scholar
  6. 6.
    Nowack, J., Stawsk, C., and Geiser, F., More functions of torpor and their roles in a changing world, J. Comp. Physiol. B, 2017. doi: 10.1007/s00360-017-1100-yGoogle Scholar
  7. 7.
    Breukelen, F. and Martin, S.L., Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol., 2002, vol. 92, pp. 2640–2647.CrossRefPubMedGoogle Scholar
  8. 8.
    Heldmaier, G., Ortmann, S., and Elvert, R., Natural hypometabolism during hibernation and daily torpor in mammals, Respir. Physiol. Neurobiol., 2004, vol. 141, pp. 317–329.CrossRefPubMedGoogle Scholar
  9. 9.
    Hut, R.A., Barnes, B.M., and Daan, S., Body temperature patterns before, during, and after seminatural hibernation in the European ground squirrel, J. Comp. Physiol., 2002, vol. 172B, pp. 47–58.Google Scholar
  10. 10.
    Anufriev, A.I. and Akhremenko, A.K., Energy cost of hibernation of the long-tailed ground squirrel, Ekol., 1990, no. 5, pp. 68–72.Google Scholar
  11. 11.
    Anufriev, A.I. and Akhremenko, A.K., Hibernation and thermoregulation at a temperature below zero, Ekol., 1997, no. 3, pp. 233–235.Google Scholar
  12. 12.
    Solomonov, N.G., Anufriev, A.I., and Solomonova, T.N., Mechanisms of hiberna tion in small mammals of Yakutia, Cryobiology, 2010, vol. 61, iss. 3, p. 397.CrossRefGoogle Scholar
  13. 13.
    Storey, K.B. and Storey, J.M., Metabolic rate depression: the biochemistry of mammalian hibernation, Adv. Clin. Chem., 2010, vol. 52,. 77–108.CrossRefPubMedGoogle Scholar
  14. 14.
    Drew, K.L., Toien, O., Rivera, P.M., Smith, M.A., Perry, G., and Rice, M.E., Role of the antioxidant ascorbate in hibernatio n and warming from hibernation, Comp. Biochem. Physiol. C, Toxicol Pharmacol., 2002, vol. 133, pp. 483–492.CrossRefGoogle Scholar
  15. 15.
    Li, N.G., Physiological mechanisms of adaptation of insects to cold and dry climate of Yakutia, Doctorate Sci. Diss., Kazan, 2014.Google Scholar
  16. 16.
    Karanova, M.V. and Gakhova, E.N., Biochemical strategy of survival of the freshwater mollusc Limnaea stagnalis at near-zero temperatures, J. Evol. Biochem. Physiol., 2007, vol. 43, pp. 310–317.CrossRefGoogle Scholar
  17. 17.
    Karanova, M.V., Effect of acute cold shock on free amino acid pools in the Amur sleeper Perccottus glehni (Eleotridae, Perciformes), Izvestiya RAN, Ser. Biol., 2011, no. 2, pp. 153–162.Google Scholar
  18. 18.
    Chernaya, L.V., Kovalchuk, L.A., and Nokhrina, E.S., Season variability of free amino acids in the tissues of the medical leech (Hirudo verbena Carena, 1820), Russ. J. Ecology, 2015, no. 46, pp. 385–387.CrossRefGoogle Scholar
  19. 19.
    Chernaya, L.V., Kovalchuk, L.A., and Nokhrina, E.S., Role of the tissue free amino acids in adaptation of medicinal leeches Hirudo medicinalis L, 1758 to exrtreme climatic conditions, Dokl. Biol. Sci., 2016, vol. 466, pp. 42–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Bol’shakov, V.N., Orlov, O.L., and Snitko, V.P., Letuchie myshi Urala (Bats of the Ural), Ekaterinburg, 2005.Google Scholar
  21. 21.
    Anufriev, A.I. and Revin, Yu.V., Bioenergetics of hibernation in bats of Yakutia (Chiroptera, Vespertilionidae), Plecotus et al., 2006, vol. 9, pp. 8–17.Google Scholar
  22. 22.
    Stawski, C., Willis, C.K.R., and Geiser, F., The importance of temporal in bats, J. Zool., 2014, vol. 292, pp. 86–100. doi: 10.1111/jzo.12105CrossRefGoogle Scholar
  23. 23.
    Antonova, E.P., Ilyukha, V.A., Belkin, V.V., Khizhkin, E.A., Sergina, S.N., Ilyina, T.N., and Yakimova, A.E., Energy supply and antioxidant defense in bats during hibernation, Uch. Zap. Orlov. Gos. Univer., 2014, no. 7 (63), pp. 235–236.Google Scholar
  24. 24.
    Wilhelm Filho, D., Althoff, S.L., Dafre, A.L., and Boveris, A., Antioxidant defenses, longevity and ecophysiology of South American bats, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 2007, vol. 146 (1–2), pp. 214–220.CrossRefPubMedGoogle Scholar
  25. 25.
    Lehninger, A.L., Biochemistry. The Molecular Basis of Cell Structure and Function, New York, 1972.Google Scholar
  26. 26.
    European Convention on the Protection of Vertebrate Animals Used for Experiments or Other Scientific Purposes, Strasbourg, March 18, 1986,
  27. 27.
    James, L.B., Amino acid analysis: a fall-off in performance, J. Chromatogr., 1997, vol. 408, pp. 291–295.CrossRefGoogle Scholar
  28. 28.
    Shitikov, V.K. and Rozenberg, G.S., Randomizatsiya i butstrep: statisticheskii analiz v biologii i ekologii s izpol’zovaniem R (Randomization and Bootstrap: Statistical Analysis in Biology and Ecology Using R), Tolyatti, 2014.Google Scholar
  29. 29.
    Chessel, D., Dufour, A.B., and Thioulouse, J., The ade4 package-I: one-table methods, R News, 2004, no. 4, pp. 5–10.Google Scholar
  30. 30.
    Mishchenko, V.A., Kovalchuk, L.A., Chernaya, L.V., and Chibiryak, M.V., Seasonal features of basal metabolism in the pond bat Myotis dasysneme (Boie, 1825) inhabiting the Ural, Gornye ekosistemy i ikh komponenty, VIVseross. Konf., (Mountain Ecosystems and their Components, VIAll-Russian Conf.), Nalchik, 2017, pp. 162–164.Google Scholar
  31. 31.
    Wang, P., Walter, R.D., Bhat, B.G., Florant, G.L., and Coleman, R.A., Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the goldenmantled ground squirrel (Spermophilus lateralis), Comp. Biochem. Physiol. B, 1997, vol. 118, pp. 261–267.CrossRefPubMedGoogle Scholar
  32. 32.
    Kovalchuk, L.A., Mishchenko, V.A., Snitko, V.P., and Chernaya, L.V., Nonessential and essential amino acids in ontogenesis of the pond bat Myotis dasycneme (Boie, 1825), Sovr. Probl. Nauki Obraz., 2014, no. 4, pp. 1–6.Google Scholar
  33. 33.
    Yakimenko, M.A. and Popova, N.K., Effect of 5-oxytryptophan on contractile thermogenesis, Byul. Eksp. Biol. Med., 1976, vol. 81, no. 2, pp. 230–231.Google Scholar
  34. 34.
    Jansky, L., Lehouckova, M., Vybiral, S., Bartunkova, R., and Stefl, B., Effect of serotonin on thermoregulation of a hibernator (Mesocricetus auratus), Physiol. Bohemoslov., 1973, vol. 22, pp. 115–124.PubMedGoogle Scholar
  35. 35.
    Anchordogny, T., Carpenter, J.F., Loomis, S.H., and Crowe, J.H., Mechanisms of interaction of amino acids with phospholipids bilayers during freezing, Biochem. Biophys. Acta, 1972, vol. 274, pp. 75–82.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Kovalchuk
    • 1
    Email author
  • V. A. Mishchenko
    • 1
    • 2
  • N. V. Mikshevich
    • 3
  • L. V. Chernaya
    • 1
  • M. V. Chibiryak
    • 1
  • A. P. Yastrebov
    • 4
  1. 1.Institute of Plant and Animal EcologyUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B. N. EltsinYekaterinburgRussia
  3. 3.Ural State Pedagogical UniversityYekaterinburgRussia
  4. 4.Ural State Medical UniversityYekaterinburgRussia

Personalised recommendations