Advertisement

High-Speed Extrustion of Polyethylene in the Acceleration of Projectiles in Ballistic Launchers

  • N. V. BykovEmail author
  • A. S. Karneychik
  • A. A. Makarov
  • M. S. Tovarnov
Article
  • 1 Downloads

Abstract

Acceleration of projectiles in ballistic launchers by means of high-speed extrusion of polyethylene through a tapered adapter is experimentally and theoretically studied. Quasi-one-dimensional gas-dynamic model of a polydisperse mixture of gas and powder particles and a viscoplastic model of a deformable piston are used. The results of numerical simulation of the process under study and the results of a series of shots from a powder ballistic launcher are given. The influence of the geometry of a tapered section and input velocity of the deformable piston on the output velocity of a projectile is experimentally investigated.

Keywords

high-speed extrusion methods for acceleration of bodies hydrodynamic effect internal ballistics ballistic launchers polymer deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Zlatin, A. P. Krasil’shchikov, G. I. Mishin, and N. N. Popov, Ballistic Launchers and Their Application in Experimental Studies (Nauka, Moscow, 1974) [in Russian].Google Scholar
  2. 2.
    N. V. Bykov, “Numerical Modelling of Physical Processes in a Ballistic Laboratory Setup with a Tapered Adapter and Plastic Piston Used for Obtaining High Muzzle Velocities,” J. Phys.: Conf. Ser. 572, 012055 (2014).Google Scholar
  3. 3.
    E. N. Brown, J. Furmanski, K. J. Ramos, et al., “High-Density Polyethylene Damage at Extreme Tensile Conditions,” J. Phys.: Conf. Ser. 500, 112011 (2014).Google Scholar
  4. 4.
    J. Furmanski, C. P. Trujillo, D. T. Martinez, et al., “Dynamic-Tensile-Extrusion for Investigating Large Strain and High Strain Rate Behavior of Polymers,” Polymer Test. 31 (8), 1031–1037 (2012).CrossRefGoogle Scholar
  5. 5.
    N. V. Bykov, V. V. Zelentsov, and A. S. Karneychik, “Bicaliber Ballistic Gun Mount with the Deformable Piston,” Izh. Zh.: Nauka Innov. 9 (2013) [Eng. J.: Sci. Innov. 9 (21) (2013)]; DOI:  https://doi.org/10.18698/2308-6033-2013-9-945
  6. 6.
    V. Z. Kasimov, O. V. Ushakova, Yu. P. Khomenko, “Numerical Modeling of Interior Ballistics Processes in Light Gas Guns,” Prikl. Mekh. Tekh. Fiz. 44 (5), 13–22 (2003) [J. Appl. Mech. Tech. Phys. 44 (5), 612–619 (2003)].zbMATHGoogle Scholar
  7. 7.
    Yu. P. Khomenko, A. N. Ishchenko, and V. Z. Kasimov, Mathematical Simulation of Intraballistic Processes in Barrel Systems (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].Google Scholar
  8. 8.
    I. V. Semenov, P. S. Utkin, I. F. Akhmed’yanov, and I. S. Men’shov, “Application of Multiprocessor Computational Equipment for Solving Internal Ballistics Problems,” Vychisl. Met. Programm. 12, 183–193 (2011).Google Scholar
  9. 9.
    N. V. Bykov and E. A. Nesterenko, “Comparative Analysis of Computational Codes for Solving Internal Ballistics Problems on the Example of an AGARD Test Problem,” Obor. Tekh., No. 2, 21–36 (2015).Google Scholar
  10. 10.
    N. V. Bykov and E. A. Nesterenko, “Mathematical Modeling and Visualization of Intrachamber Processes in a Ballistic Setup with Hydrodynamic Effect,” Nauchnaya Vizualizatsiya (Scientific Visualization) 7 (1), 65–77 (2015)].Google Scholar
  11. 11.
    V. A. Poselevich, N. N. Pilyugin, S. Yu. Chernyavskii, “Effect of Friction on Motion of a Piston Driven by Combustion Products,” Prikl. Mekh. Tekh. Fiz. 19 (5), 73–79 (1978) [J. Appl. Mech. Tech. Phys. 19 (5), 634–639 (1978)].Google Scholar
  12. 12.
    C. E. Weir, “Temperature Dependence of Compression of Linear High Polymers of High Pressures,” J. Res. Nat. Bureau Standards 53 (4), 245–252 (1954).CrossRefGoogle Scholar
  13. 13.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Questions of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].zbMATHGoogle Scholar
  14. 14.
    M. S. Liou and C. J. Steffen, “A New Flux Splitting Scheme,” J. Comput. Phys. 107, 23–39 (1993).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Y. Wada and M.-S. Liou, “A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities,” AIAA Paper No. 94-0083 (1994).Google Scholar
  16. 16.
    J. Nessbaum, P. Helluy, J.-M. Herard, and A. Carriere, “Numerical Simulations of Gas-Particle Flows with Combustion,” Flow, Turb. Combust. 76 (4), 403–417 (2006).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Bykov
    • 1
    Email author
  • A. S. Karneychik
    • 1
  • A. A. Makarov
    • 1
  • M. S. Tovarnov
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations