Advertisement

Similarity Laws in Laser Cladding of Cermet Coatings

  • A. A. GolyshevEmail author
  • A. M. Orishich
  • A. A. Filippov
Article
  • 6 Downloads

Abstract

The influence of the laser beam parameters (power, motion velocity, and focus position) on the characteristics of the track being formed (size, elemental composition, and microhardness) is studied. If the difference in the laser radiation absorption coefficients in the heat conduction and keyhole regimes is taken into account, then the track sizes can be determined by a unified dependence on the energy parameter. The effect of the laser beam on the chemical composition and microhardness of cermet (WC-NiCrBSi) tracks is studied. Regardless of the track formation regime, these parameters are determined by a dimensionless parameter, which describes the degree of dilution of chemical substances. It is found that a track with the maximum mass fraction of tungsten and the greatest value of microhardness is formed at small values of the dimensionless parameter, which corresponds to the heat conduction regime. The microhardness of the deposited cermet structure is observed to be 4–5 times higher than the microhardness of the substrate material.

Keywords

additive technologies laser cladding CO2 laser tungsten carbide nickel microstructure microhardness dimensionless parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wohlers Report 2016—3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report (Wohlers Assoc. Inc., Fort Collins, 2016).Google Scholar
  2. 2.
    F. Bartolomeu, M. Buciumeanu, E. Pinto, et al., “316L Stainless Steel Mechanical and Tribological Behavior—A Comparison between Selective Laser Melting, Hot Pressing and Conventional Casting,” Additive Manufactur., No 16, 81–89 (2017).Google Scholar
  3. 3.
    L. Thijs, “Microstructure and Texture of Metal Parts Produced by Selective Laser Melting,” Dissertation (Leuven, 2014).Google Scholar
  4. 4.
    K. Kempen, “Expanding the Materials Palette for Selective Laser Melting of Metals,” Dissertation (Leuven, 2015).Google Scholar
  5. 5.
    J. P. Kruth, L. Froyen, Vaerenbergh J. Van, et al., “Selective Laser Melting of Iron-Based Powder,” J. Mater. Process. Technol., No. 49, 616–622 (2004).Google Scholar
  6. 6.
    D. B. Hann, J. Iammi, and J. Folkes, “A Simple Methodology for Predicting Laser-Weld Properties from Material and Laser Parameters,” J. Phys., D: Appl. Phys., No 44, 445401 (2011).Google Scholar
  7. 7.
    R. Rai, J. W. Elmer, T. A. Palmer, and T. DebRoy, “Heat Transfer and Fluid Flow during Keyhole Mode Laser Welding of Tantalum, Ti-6Al-4V 304L Stainless Steel and Vanadium,” J. Phys., D: Appl. Phys., No 40, 5753–5766 (2007).Google Scholar
  8. 8.
    S. A. Khaillarah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta Mater., No. 108, 36–45 (2016).Google Scholar
  9. 9.
    T. Heeling, M. Cloots, and K. Wegener, “Melt Pool Simulation for the Evaluation of Process Parameters in Selective Laser Melting,” Additive Manufactur., No. 14, 116–125 (2017).Google Scholar
  10. 10.
    V. M. Fomin, A. A. Golyshev, V. F. Kosarev, et al., “Creation of Heterogeneous Materials on the Basis of B4C and Ni Powders by the Method of Cold Spraying with Subsequent Layer-by-Layer Laser Treatment,” Prikl. Mekh. Tekh. Fiz. 58 (5), 218–227 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 947–955 (2017)].Google Scholar
  11. 11.
    J. Metelkova, Y. Kinds, K. Kempen, et al., “On the Influence of Laser Defocusing in Selective Laser Melting of 316L,” Additive Manufacture, 23, 161–169 (2018).CrossRefGoogle Scholar
  12. 12.
    A. M. Rubenchik, W. E. King, and S. S. Wu, “Scaling Laws for the Additive Manufacturing,” J. Mater. Process. Technol., No. 257, 234–243 (2018).Google Scholar
  13. 13.
    W. E. King, H. D. Barth, V. M. Castillo, et al., “Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing,” J. Mater. Process. Technol., No. 214, 2915–2925 (2017).Google Scholar
  14. 14.
    M. Tang, P. C. Pistorius, and J. L. Beuth, “Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion,” Additive Manufactur., No. 14, 39–48 (2017).Google Scholar
  15. 15.
    D. B. Miracle, “Metal Matrix Composites from Science to Technological Significance,” Compos. Sci. Technol. 65(15/16), 2526–2540 (2005).CrossRefGoogle Scholar
  16. 16.
    J. Rodriguez, A. Martin, R. Fernandez, and J. E. Fernandez, “An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings,” Wear 255, 950–955 (2003).CrossRefGoogle Scholar
  17. 17.
    D. Chaliampalias, G. Vourlias, E. Pavlidou, et al., “Comparative Examination of the Microstructure and High Temperature Oxidation Performance of NiCrBSi Flame Sprayed and Pack Cementation Coatings,” Appl. Surface Sci. 255, 3605–3612 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    C. Guo, J. Zhou, J. Chen, et al., “High Temperature Wear Resistance of Laser Cladding NiCrBSi and NiCrBSi/WC-Ni Composite Coating,” Wear 270, 492–498 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Tobar, C. Alvarez, J. Amado, et al., “Morphology and Characterization of Laser Clad Composite NiCrBSi-WC Coatings on Stainless Steel,” Surface Coatings Technol., No. 200, 6313–6317 (2006).Google Scholar
  20. 20.
    K. Bonny, P. Baets, J. Vleugels, et al., “Dry Reciprocating Sliding Friction and Wear Response of WC-Ni Cemented Carbides,” Tribol. Lett., No. 31, 199–209 (2008).Google Scholar
  21. 21.
    A. A. Golyshev, A. G. Malikov, A. M. Orishich, and V. B. Shulyat’ev, “High-Quality Laser Cutting of Stainless Steel in an Inert Gas Atmosphere by Fiber Ytterbium and CO2 Lasers,” Kvant. Elektron. 44 (3), 233–238 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    V. M. Fomin, A. A. Golyshev, A. M. Orishich, and V. B. Shulyat’ev, “Energy Balance in High-Quality Cutting of Steel by Fiber and CO2 Lasers,” Prikl. Mekh. Tekh. Fiz. 58 (2), 212–220 (2017) [J. Appl. Mech. Tech. Phys. 58 (2), 371–378 (2017)].Google Scholar
  23. 23.
    A. A. Golyshev, A. G. Malikov, A. M. Orishich, and V. B. Shulyat’ev, “Experimental Investigation of Laser-Oxygen Cutting of Low-Carbon Steel by Fiber and CO2 Lasers in the Case with the Minimum Roughness,” Kvant. Elektron. 44 (10), 970–974 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    U. Oliveira, V. Ocelík, and J. Th. M. De Hosson, “Analysis of Coaxial Laser Cladding Processing Conditions,” Surface Coatings Technol., No. 197, 127–136 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Golyshev
    • 1
    • 2
    Email author
  • A. M. Orishich
    • 1
    • 2
  • A. A. Filippov
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations