Synthesis of Composites Made of Powder Mixtures (Ti, C, and Al) in Controlled Heating

  • N. V. BukrinaEmail author
  • A. V. Baranovskiy


Synthesis of metal matrix composites from powder mixtures is experimentally studied in a thermal explosion. A mathematical model for initiating a reaction that allows for the main physical and chemical phenomena changing the phase composition of a sample is formulated. It is shown that simulation results qualitatively agree with experimental data.


high-temperature synthesis thermal explosion mathematical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Barzykin, V. T. Gontkovskaya, A. G. Merzhanov, and S. I. Khudyaev, “Unsteady Theory of Thermal Explosion,” Prikl. Mekh. Tekh. Fiz. 5 (3), 118–125 (1964).Google Scholar
  2. 2.
    V. Yu. Filimonov and K. B. Koshelev, “Adiabatic Thermal Explosion in Disperse Condensed Systems with Limited Solubility of the Reactants in the Product Layer,” Fiz. Goreniya Vzryva 49 (4), 91–100 (2013) [Combust., Expl., Shock Waves 49 (1), 463–471 (2013)].Google Scholar
  3. 3.
    V. V. Evstigneev, E. V. Smirnov, A. V. Afanas’ev, et al., “Dynamic Thermal Explosion in Mechanically Activated Powder Mixtures,” Polzunov. Vestn., No. 4, 162–167 (2007).Google Scholar
  4. 4.
    A. G. Merzhanov and A. G. Strunina, “Thermal Explosion during Heating with a Constant Velocity,” Nauch.-Tekh. Probl. Goreniya Vzryva, No. 1, 59–68 (1965).Google Scholar
  5. 5.
    A. G. Strunina, V. T. Gontkovskaya, and A. G. Merzhanov, “Laws of Thermal Explosion III. Temperature Field and Transition from Auto-Ignition to Ignition,” Fiz. Goreniya Vzryva 1 (3), 36–40 (1965) [Combust., Expl., Shock Waves 1 (3), 20–22 (1965)].Google Scholar
  6. 6.
    A. G. Merzhanov, “Nonisothermal Methods in Chemical Kinetics,” Fiz. Goreniya Vzryva 9 (1), 4–36 (1973) [Combust., Expl., Shock Waves 9 (1), 3–28 (1973)].Google Scholar
  7. 7.
    X. Zhu, T. Zhang, V. Morris, and D. Marchant, “Combustion Synthesis of NiAl/Al2O3 Composites by Induction Heating,” Intermetallics 18, 1197–1204 (2010).CrossRefGoogle Scholar
  8. 8.
    I.-J. Shon, “Simultaneous Synthesis and Consolidation of Nanocrystalline Al-TiC Composite by High-Frequency Induction Heating,” Ceram. Int. 42, 15113–15118 (2016).CrossRefGoogle Scholar
  9. 9.
    O. V. Lapshin and V. K. Smolyakov, “Thermal Explosion in Mechanically Activated Ti-C System,” Int. J. Self-Propagat. High-Temp. Synth. 25 (3), 135–138 (2016).CrossRefGoogle Scholar
  10. 10.
    E. A. Nekrasov, A. M. Timokhin, and A. T. Pak, “Theory of Gasless Combustion with Phase Transformations,” Fiz. Goreniya Vzryva 26 (5), 79–85 (1990) [Combust., Expl., Shock Waves 26 (5), 568–573 (1990)].Google Scholar
  11. 11.
    L. S. Stel’makh, N. N. Zhilyaeva, and A. M. Stolin, “Mathematical Simulation of Thermal Regime of SHS Compaction,” Izh.-Fiz. Zh. 63 (5), 623–629 (1992).Google Scholar
  12. 12.
    N. N. Semenov, “Thermal Theory of Combustion and Explosion,” Usp. Fiz. Nauk 23 (3), 251–292 (1940).CrossRefGoogle Scholar
  13. 13.
    Ya. B. Zel’dovich, Theory of Combustion and Detonation (Izd. Akad. Nauk SSSR, Moscow, 1944) [in Russian].Google Scholar
  14. 14.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Izd. Akad. Nauk SSSR, Moscow, 1947; Princeton Univ. Press, 1955).Google Scholar
  15. 15.
    V. K. Smolyakov, “Effect of Structural Changes on the Combustion of Metal Powder Compacts in a Gas,” Fiz. Goreniya Vzryva 24 (3), 18–26 (1988) [Combust., Expl., Shock Waves 24 (3), 277–284 (1988)].Google Scholar
  16. 16.
    O. V. Lapshin and V. E. Ovcharenko, “Effect of the Heating Stage on Ignition Conditions of a Nickel-Aluminum Powder Mixture,” Fiz. Goreniya Vzryva 36 (5), 22–26 (2000) [Combust., Expl., Shock Waves 36 (5), 571–574 (2000)].Google Scholar
  17. 17.
    A. A. Shashchina and A. G. Knyazeva, “Propagation Regimes of a Solid-Phase Reaction in a Slit Between Two Inert Plates,” Fiz. Mezomekh. 7(S1-1), 82–88 (2004).Google Scholar
  18. 18.
    V. G. Prokof’ev and V. K. Smolyakov, “Unsteady Combustion Regimes of Gasless Systems with a Low-Melting Inert Component,” Fiz. Goreniya Vzryva 38 (2), 21–25 (2002) [Combust., Expl., Shock Waves 38 (2), 143–147 (2002)].Google Scholar
  19. 19.
    M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions,” Fiz. Goreniya Vzryva 38 (2), 77–86 (2015) [Combust., Expl., Shock Waves 38 (2), 578–586 (2015)].Google Scholar
  20. 20.
    M. A. Korchagin, E. G. Avvakumov, G. G. Lepezin, and O. B. Vinokurova, “Thermal Explosion and Self-Propagating High-Temperature Synthesis in Mechanically Activated SiO2-Al Mixtures,” Fiz. Goreniya Vzryva 50 (6), 21–27 (2014) [Combust., Expl., Shock Waves 50 (6), 641–646 (2014)].Google Scholar
  21. 21.
    Physical Quantities: Reference Book, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  22. 22.
    A. G. Knyazeva and S. P. Buyakova, “Mathematical Model of Three-Layer Composite Synthesis during Hot Isostatic Pressing,” AIP Conf. Proc. 1783, 020092-1-020092-4 (2016); DOI:
  23. 23.
    F. L. Matthews and R. D. Rawlings, Composite Materials: Engineering and Science (Woodhead, 1999).Google Scholar
  24. 24.
    A. G. Knyazeva, E. N. Korosteleva, O. N. Kryukova, et al., “Physical Features of Synthesizing the Powders of Titanium Based Composites for Additive Technologies,” Mashinostoenie: Setevoi Elektron. Nauch. Zh. 5 (4), 3–13 (2017).Google Scholar
  25. 25.
    O. N. Kryukova and A. G. Knyazeva, “Formal-Kinetic Parameters of Reactions in the Case of Deposition of Carbide Coatings on Fe and Si,” Izv. Vyssh. Uchebn. Zaved., Fiz. 57(9/3), 113–117 (2014).Google Scholar
  26. 26.
    M. A. Mikheev, Fundamentals of Heat Transfer (Energiya, Moscow, 1977) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations