Advertisement

Numerical Study of Stress Relaxation in Nanostructures in the Course of Uniaxial Straining

  • I. F. Golovnev
  • E. I. GolovnevaEmail author
  • M. S. Voronin
  • E. R. Pruuel
Article
  • 1 Downloads

Abstract

Stress relaxation in a nano-sized rod containing structural defects in the course of constant-rate uniaxial straining is studied, and the reasons for the onset of this phenomenon are determined. Under the assumption that structural defects can serve as carriers of irreversible strain of a higher level than dislocations, the problem is solved by the molecular dynamics method. It is found that stress relaxation is accompanied by the transition of the entire system to a steady state with a deeper potential minimum as compared to the system energy before the stress relaxation process, resulting in a temperature increase and reduction of the strain tensor components.

Keywords

molecular dynamics method stress relaxation nanorod crystal lattice defects carrier of irreversible strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Kanel, E. B. Zaretsky, S. V. Razorenov, et al. “Evolutions of Elastic-Plastic Shock Compression Waves in Different Materials,” AIP Conf. Proc. 1793, 100030 (2017).CrossRefGoogle Scholar
  2. 2.
    N. R. Barton, J. V. Bernier, R. Becker, et al., “A Multiscale Strength Model for Extreme Loading Conditions,” J. Appl. Phys. 109, 073501 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    G. Z. Voyiadjis and F. H. Abed, “Microstructural Based Models for bcc and fcc Metals with Temperature and Strain Rate Dependency,” Mech. Materials 37(2/3), 355–378 (2005).CrossRefGoogle Scholar
  4. 4.
    N. S. Selyutina and Yu. V. Petrov, “Prediction of the Dynamic Yield Stress of Metals with the Use of Two Structural-Temporal Parameters,” Fiz. Tverd. Tela 60 (2), 240–244 (2018).Google Scholar
  5. 5.
    L. A. Merzhievskii and S. A. Shamonin, “Construction of the Time Dependence of the Relaxation of Tangential Stresses on the State Parameters of a Medium,” Prikl. Mekh. Tekh. Fiz. 21 (5), 170–179 (1980) [J. Appl. Mech. Tech. Phys. 21 (5), 716–724 (1980)].Google Scholar
  6. 6.
    M. S. Voronin, “Simplified Method of Calculating the Parameters of the Relaxation Time of the Shear Stress by an Example of Polymers,” Vychisl. Met. Program. 18 (2), 146–157 (2017).MathSciNetGoogle Scholar
  7. 7.
    V. M. Kosenkov, “Determination of Relaxation and Dislocation Characteristics of Metals on the Basis of Shock Compression Diagrams,” Prikl. Mekh. Tekh. Fiz. 55 (4), 33–42 (2014) [J. Appl. Mech. Tech. Phys. 55 (4), 578–585 (2014)].Google Scholar
  8. 8.
    V. S. Krasnikov, A. Yu. Kuksin, A. E. Maier, and A. V. Yanilkin, “Plastic Deformation in High-Velocity Loading of Aluminum: Multiscale Approach,” Fiz. Tv. Tela 52 (7), 1295–1304 (2010).Google Scholar
  9. 9.
    S. Groh, E. B. Marin, M. F. Horstemeyer, and H. M. Zbib, “Multiscale Modeling of the Plasticity in an Aluminum Single Crystal,” Int. J. Plast. 25 (8), 1456–1473 (2009).CrossRefzbMATHGoogle Scholar
  10. 10.
    Y. Xu-Sheng, W. Yun-Jiang, W. Guo-Yong, et al., “Time, Stress, and Temperature-Dependent Deformation in Nanostructured Copper: Stress Relaxation Tests and Simulations,” Acta Mater. 108, 252–263 (2016).CrossRefGoogle Scholar
  11. 11.
    Z. Tomasz and C. Dariusz, “Stress Induced Grain Boundaries in Thin Co Layer Deposited on Au and Cu,” Appl. Phys. A: Mater. Sci. Proces. 122 (10), 908 (2016).CrossRefGoogle Scholar
  12. 12.
    Q. Qingquan, Y. Sheng, Ch. Guangming, et al., “Recoverable Plasticity in Penta-Twinned Metallic Nanowires Governed by Dislocation Nucleation and Retraction,” Nature Comm. 6, 5983 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    A. F. Voter, “Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al,” Tech. Report No. LA-UR 93–3901 (Los Alamos National Laboratory, Los Alamos, 1993).Google Scholar
  14. 14.
    E. I. Golovneva, I. F. Golovnev, and V. M. Fomin, “Modeling of Quasi-Static Processes in Crystals by the Molecular Dynamics Method,” Fiz. Mezomekh. 6 (6), 5–10 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. F. Golovnev
    • 1
  • E. I. Golovneva
    • 1
    Email author
  • M. S. Voronin
    • 2
    • 3
  • E. R. Pruuel
    • 2
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations