On the Theory of Salt Washout from Water-Oil Emulsion with Fresh Water

  • V. Sh. Shagapov
  • E. V. GaliakbarovaEmail author
  • I. K. Gimaltdinov


A theoretical model describing the motion of particles of salt water in oil which flow around a larger drop of fresh water has been developed to solve the problem of cleaning oil from salts. The results of calculations of the effect of the radius and initial velocity of a drop of fresh water on the coagulation of fresh and salt water drops are presented.


desalting technology jet mixer droplet motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. R. Yushkov, G. P. Khizhnyak, and P. Yu. Ilyushin, Development and Operation of Oil and Gas Fields: Textbook (Perm National Research Polytech. Univ., Perm 2013) [in Russian].Google Scholar
  2. 2.
    A. A. Volkov, V. D. Balashova, and O. Yu. Konoval’chuk, “On the Breakup of Stable Water-Oil Emulsions,” Nefteprom. Delo, No. 5, 40–42 (2013).Google Scholar
  3. 3.
    Yu. I. Dytnerskii, Basic Processes and Apparatuses of Chemical Technology (Al’yans, Moscow, 2010) [in Russian].Google Scholar
  4. 4.
    E. V. Galiakbarova, R. N. Bakhtizin, and V. F. Galiakbarov, “Use of Hydraulic Jet Mixers to Intensify Oil Treatment for Refining,” Neftegaz. Delo, No. 14–1, 145–149 (2016).Google Scholar
  5. 5.
    V. F. Galiakbarov, M. F. Galiakbarov, I. F. Lopatin, A. Yu. Khmel’nik, V. S. Bezmelnitsyn, A. Yu. Shil’nikov, and L. P. Maksimchik, “Composition for Dehydration and Desalting of Oil and a Method of Its Use in a Device for Breakup of Water-Oil Emulsions,” RF Patent No. 2178449, MPK S 10 G 33/04, S 10 G 33/06, Appl. August 07, 2000, Publ. January 20, 2002, Bul. No. 2.Google Scholar
  6. 6.
    V. F. Galiakbarov, E. V. Galiakbarova, and B. A. Yakhin, “Jet Hydraulic Mixer,” RF Patent No. 2600998, MPK V 01 F 5/00. Appl. August 25, 2015, Publ. October 27, 2016, Bul. No. 30.Google Scholar
  7. 7.
    V. F. Galiakbarov, E. V. Galiakbarova, and B. A. Yakhin, “Jet Hydraulic Mixer,” RF Patent No. 159236, MPK V 01 F 5/00 3/08, Appl. August 25, 2015, Publ. February 10, 2016, Bul. No. 4.Google Scholar
  8. 8.
    V. F. Galiakbarov, E. V. Galiakbarova, K. M. Mustafin, “Jet Hydraulic Mixer,” RF Patent No. 169527, MPK V 01 F 3/08 5/06, Appl. October 4, 2016, Publ. March 22, 2017, Bul. No. 9.Google Scholar
  9. 9.
    V. F. Galiakbarov, E. V. Galiakbarova, K. M. Mustafin, “In-line Jet Mixer,” RF Patent 171985, MPK V 01 F 5/00, Appl. November 15, 2016, Publ. June 23, 2017, Bul. No. 18.Google Scholar
  10. 10.
    E. V. Galiakbarova and V. F. Galiakbarov, “Jet Hydraulic Mixer,” RF Patent No. 176187, MPK V 01 F 5/00, Appl. April 6, 2017, Publ. January 11, 2018, Bul. No. 1.Google Scholar
  11. 11.
    N. V. Usheva, A. V. Kravtsov, O. E. Moizes, and E. A. Kuzmenko, “Modeling of Crude Oil Treatment Technology,” Izv. Tom. Politekh. Univ. 308 (4), 127–130 (2005).Google Scholar
  12. 12.
    V. N. Shvetsov and I. I. Kabirov, “Oil Desalting with Electrical Spraying of Wash Water,” Khim. Tekhnol. Topliv Masel, No. 6, 16–18 (1992).Google Scholar
  13. 13.
    H. Kiani, S. Moradi, B. Soltani Soulgani, and S. Mousavian, “Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks,” Int. J. Environment. Ecolog. Eng. 7 (12), 1015–1018 (2013).Google Scholar
  14. 14.
    E. F. Pruneda, E. R. B. Escobedo, and F. J. G. Vázquez, “Optimum Temperature in the Electrostatic Desalting of Maya Crude Oil,” J. Mex. Chem. Soc. 49 (1), 14–19 (2005).Google Scholar
  15. 15.
    C. D. Eastwood, L. Armi, and J. C. Lasheras, “The Breakup of Immiscible Fluids in Turbulent Flows,” J. Fluid Mech. 502, 309–333 (2004).ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Eggers and E. Villermaux, “Physics of Liquid Jets,” Rep. Progr. Phys. 71, 036601 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    G. M. Sidorov, B. A. Yakhin, and R. F. Akhmetov, “Modeling the Operation of a Static Mixer (Oil-Water) for Oil Desalting and Pilot Test,” Usp. Sovr. Estestvoz., No. 2, 152–156 (2017).Google Scholar
  18. 18.
    S. E. Tarasevich and A. B. Yakovlev, “Average Diameter of Drops Formed by Disintegration of Liquid Jets and Films (Review),” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 4, 52–57 (2004).Google Scholar
  19. 19.
    V. G. Levich, Physico-Chemical Hydrodynamics (Fizmatgiz, Moscow, 1959) [in Russian].Google Scholar
  20. 20.
    R. I. Nigmatulin, Continuum Mechanics. Kinematics. Dynamics. Thermodynamics. Statistical Dynamics (GEOTAR-Media, Moscow, 2014) [in Russian].Google Scholar
  21. 21.
    R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York, 1991), Part 1.Google Scholar
  22. 22.
    L. I. Sedov, Course in Continuum Mechanics, Vol II: Physical Functions and Formulations of Problems (Nauka, Moscow, 1970; Wolters-Noordhoff, 1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Sh. Shagapov
    • 1
  • E. V. Galiakbarova
    • 2
    Email author
  • I. K. Gimaltdinov
    • 2
  1. 1.Mavlyutov Institute of Mechanics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia
  2. 2.Ufa State Petroleum Technical UniversityUfaRussia

Personalised recommendations