Effect of the Angular and Linear Parameters of Interaction of Water Droplets of Various Shapes on the Characteristics of Their Collisions

  • G. V. Kuznetsov
  • A. K. Rebrov
  • P. A. StrizhakEmail author
  • N. E. Shlegel


The influence of the dimensionless angular and linear parameters of interaction of water droplets shaped as a sphere, an ellipsoid, and a conventionally liquid disk on the characteristics (regimes) of their collisions in air (bouncing, coalescence, separation, or disruption) is studied by using a system of high-speed video recording. Conditions of sustainable implementation of this interaction are determined. Maps of the corresponding regimes are constructed and compared with available data. The characteristic sizes, the number of liquid fragments formed in collisions, and the total areas of the evaporation surface are calculated. It is demonstrated that the liquid surface area in the case of collisions of conventionally liquid disks is significantly (by several times) greater than that in the case of spherical droplets.


water droplets shape interaction collisions angular and linear parameters bouncing coalescence separation disruption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas-Droplet Flows (Novosibirsk State Tech. Univ., Novosibirsk, 2009) [in Russian].zbMATHGoogle Scholar
  2. 2.
    D. G. Pazhi and V. S. Galustov, Fundamentals of the Liquid Spraying Technology (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  3. 3.
    V. A. Arkhipov, G. S. Ratanov, and V. F. Trofimov, “Experimental Investigation of the Interaction of Colliding Droplets,” Prikl. Mekh. Tekh. Fiz. 19 (2), 73–77 (1978) [J. Appl. Mech. Tekh. Fiz. 19 (2), 201–204 (1978)].Google Scholar
  4. 4.
    V. A. Arkhipov, I. M. Vasenin, and V. F. Trofimov, “Stability of Colliding Drops of Ideal Liquid,” Prikl. Mekh. Tekh. Fiz. 24 (3), 95–98 (1983) [J. Appl. Mech. Tech. Phys. 24 (3), 371–373 (1983)].Google Scholar
  5. 5.
    O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Evaporation and Transformation of Droplets and Large Arrays of Liquid during their Motion through High-Temperature Gases (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2016) [in Russian].Google Scholar
  6. 6.
    G. V. Kuznetsov, R. S. Volkov, and P. A. Strizhak, “Statistical Analysis of the Consequences of Collisions of Two Water Droplets Moving in a High-Temperature Gas Flow,” Pis’ma Zh. Tekh. Fiz. 41 (17), 53–60 (2015).Google Scholar
  7. 7.
    M. Orme, “Experiments on Droplet Collisions, Bounce, Coalescence and Disruption,” Progr. Energy Combust. Sci. 23 (1), 65–79 (1997).CrossRefGoogle Scholar
  8. 8.
    K. G. Krishnan, E. Loth, “Effects of Gas and Droplet Characteristics on Drop-Drop Collision Outcome Regimes,” Int. J. Multiphase Flow 77, 171–186 (2015).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. K. Pawar, F. Henrikson, G. Finotello, et al., “An Experimental Study of Droplet-Particle Collisions,” Powder Technol. 300, 157–163 (2016).CrossRefGoogle Scholar
  10. 10.
    H. Zhang, Y. Li, J. Li, Q. GLiu, “Study on Separation Abilities of Moisture Separators Based on Droplet Collision Models,” Nuclear Eng. Design 325, 135–148 (2017).CrossRefGoogle Scholar
  11. 11.
    H. Kan, H. Nakamura, S. Watano, “Effect of Collision Angle on Particle-Particle Adhesion of Colliding Particles Through Liquid Droplet,” Adv. Powder Technol. 29 (6), 1317–1322 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Kim, D. J. Lee, C. S. Lee, “Modeling of Binary Droplet Collisions for Application to Inter-Impingement Sprays,” Int. J. Multiphase Flow 35 (6), 533–549 (2019).CrossRefGoogle Scholar
  13. 13.
    G. Finotello, S. De, J. C. R. Vrouwenvelder, et al., “Experimental Investigation of non-Newtonian Droplet Collisions: The Role of Extensional Viscosity,” Exp. Fluids 59 (7), 113 (2018).CrossRefGoogle Scholar
  14. 14.
    R. S. Volkov, G. V. Kuznetsov, P. A. Strizhak, “Water Droplet Deformation in Gas Stream: Impact of Temperature Difference between Liquid and Gas,” Int. J. Heat Mass Transfer 85, 1–11 (2015).CrossRefGoogle Scholar
  15. 15.
    A. A. Shreiber, A. M. Podvisotski, V. V. Dubrovski, “Deformation and Breakup of Drops by Aerodynamic Forces,” Atomiz. Sprays. 6 (6), 667–692 (1996).CrossRefGoogle Scholar
  16. 16.
    O. V. Vysokomornaya, M. V. Piskunov, P. A. Strizhak, “Breakup of Heterogeneous Water Drop Immersed in High-Temperature Air,” Appl. Thermal Eng. 127, 1340–1345 (2017).CrossRefGoogle Scholar
  17. 17.
    P. A. Strizhak, M. V. Piskunov, R. S. Volkov, J. C. Legros, “Evaporation, Boiling and Explosive Breakup of Oil-Water Emulsion Drops under Intense Radiant Heating,” Chem. Eng. Res. Design. 127, 72–80 (2017).CrossRefGoogle Scholar
  18. 18.
    S. S. Sazhin, “Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems,” Fuel 196, 69–101 (2017).CrossRefGoogle Scholar
  19. 19.
    O. Moussa, D. Tarlet, P. Massoli, J. Bellettre, “Parametric Study of the Micro-Explosion Occurrence of W/O Emulsions,” Int. J. Thermal Sci. 133, 90–97 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. V. Kuznetsov
    • 1
  • A. K. Rebrov
    • 2
  • P. A. Strizhak
    • 1
    Email author
  • N. E. Shlegel
    • 1
  1. 1.Tomsk Polytechnical UniversityTomskRussia
  2. 2.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations