Advertisement

Influence of the Shape of the Jet Head on Its Impact on a Wetted Wall

  • A. A. Aganin
  • M. A. Il’gamov
  • T. S. GusevaEmail author
Article
  • 1 Downloads

Abstract

The influence of the shape of the jet head on its impact on a wall covered with a thin liquid layer has been studied. The conditions characteristic of the impact of the jet arising on the surface of a cavitation bubble upon its collapse near a wall have been considered. It has been established that a change in the shape of the jet head can lead to a significant change in the size of the maximum loading area of the wetted wall and in the magnitude and pattern of loading. In particular, with an increase in the degree of sharpening of the jet head, the wall pressure decreases and its spatial distribution becomes more uniform. Dependences of the maximum pressure and integral wall load on the jet shape were obtained.

Keywords

jet impact wetted wall jet shape shock waves wall load 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Korobkin, “Asymptotic Theory of Liquid/Solid Impact,” Philos. Trans. Roy. Soc. London, Ser. A 355, 507–522 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. V. Chizhov and A. A. Schmidt, “High-Speed Droplet Impact on a Target,” Zh. Tekh. Fiz. 170 (12), 18–27 (2000).Google Scholar
  3. 3.
    K. K. Haller, Y. Ventikos, D. Poulikakos, and P. Monkewitz, “Computational Study of High-Speed Liquid Droplet Impact,” J. Appl. Phys. 92 (5), 2821–2828 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    F. J. Heymann, “High-Speed Impact between a Liquid Drop and a Solid Surface,” J. Appl. Phys. 40 (13), 5113–5122 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    M. B. Lesser, “The Impact of a Compressible Liquid,” in Droplet Surface Interactions, Ed. by M. Rein (Springer-Verlag, Vienna, 2002). 456, 39–102.CrossRefGoogle Scholar
  6. 6.
    J.-B. G. Hwang and F. G. Hammitt, “High-Speed Impact between Curved Liquid Surface and Rigid Flat Surface,” J. Fluids Eng. 99 (2), 396–404 (1977).CrossRefGoogle Scholar
  7. 7.
    A. A. Aganin and T. S. Guseva, “Impact of a Liquid Cone on a Flat Rigid Wall,” Uchen. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158, book 1, 117–128 (2016).Google Scholar
  8. 8.
    A. A. Aganin and T. S. Guseva, “Impact of a Jet on a Thin Liquid Layer on a Wall,” Vestn. Bashkir. Gos. Univ. 21 (2), 245–251 (2016).Google Scholar
  9. 9.
    A. A. Aganin, M. A. Il’gamov, L. A. Kosolapova, and V. G. Malakhov, “Dynamics of a Cavitation Bubble near a Solid Wall,” Teplofiz. Aeromekh. 23 (2), 219–228 (2016).Google Scholar
  10. 10.
    A. A. Aganin and T. S. Guseva, “Influence of the the Jet End Shape at the Jet Impact on the Liquid Surface,” Uchen. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, book 2, 135–142 (2017).Google Scholar
  11. 11.
    A. A. Aganin and T. S. Guseva, “Numerical Simulation of Jet Impact on a Wall,” Mat. Model. 29 (3), 123–138 (2017).MathSciNetzbMATHGoogle Scholar
  12. 12.
    T. Yabe, F. Xiao, and T. Utsumi, “The Constrained Interpolation Profile Method for Multiphase Analysis,” J. Comput. Phys. 169 (2), 556–593 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    K. Takizawa, T. Yabe, Y. Tsugawa, et al., “Computation of Free-Surface Flows and Fluid-Object Interactions with the CIP Method Based on Adaptive Meshless Soroban Grids,” Comput. Mech. 40, 167–183 (2007).CrossRefzbMATHGoogle Scholar
  14. 14.
    J. Xiong, S. Koshizuka, and M. Sakai, “Numerical Analysis of Droplet Impingement Using the Moving Particle Semi-Implicit Method,” J. Nuclear Sci. Technol. 47 (3), 314–321 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Aganin
    • 1
  • M. A. Il’gamov
    • 1
  • T. S. Guseva
    • 1
    Email author
  1. 1.Institute of Mechanics and Engineering, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations