Advertisement

Analysis of Stability of the Boundary Layer on a Flat Plate under a Finite-Thickness Two-Layer Compliant Coating

  • A. E. Darzhain
  • A. V. BoikoEmail author
  • V. M. Kulik
  • A. P. Chupakhin
Article
  • 1 Downloads

Abstract

Results of studying stability of the Blasius boundary layer on a two-layer compliant coating in the linear formulation are reported. The computations are based on experimental parameters of viscoelasticity of a real coating, which reveal the dependences of its elasticity modulus and loss coefficient on frequency. Parametric investigations of the influence of the coating layer thicknesses and free-stream velocity on flow stability, in particular, on the critical Reynolds number, are performed. Regions of a nonmonotonic behavior of the critical Reynolds number are found, which allow one to determine the optimal thicknesses of the upper and lower layers for intense interaction with the flow. An explanation of this effect is proposed.

Keywords

compliant coatings boundary layer hydrodynamic instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Riley, M. Gad-el-Hak, and R. W. Metalfe, “Compliant Coatings,” Annual Rev. Fluid Mech. 20, 393–420 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    P. W. Carpenter, A. D. Lucey, and A. E. Dixon, “The Optimization of Compliant Walls for Drag Reduction,” in Recent Developments in Turbulence Management (Kluwer Acad. Publ., Boston, 1991), pp. 195–221.CrossRefGoogle Scholar
  3. 3.
    K. S. Yeo, “The Stability of Boundary-Layer Flow over Single- and Multiple-Layer Viscoelastic Walls,” J. Fluid Mech. 196, 359–408 (1988).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. V. Boiko, V. M. Kulik, and V. A. Filimonov, “Stability of the Boundary Layer on a Flat Plate above Compliant Coatings of Elevated Strength,” Vestn. Novosib. Gos. Univ. 6 (4), 104–115 (2011).Google Scholar
  5. 5.
    V. M. Kulik, B. N. Semenov, A. V. Boiko, et al., “Measurement of Dynamic Properties of Viscoelastic Materials,” Exp. Mech. 49, 417–425 (2009).CrossRefGoogle Scholar
  6. 6.
    V. M. Kulik, A. V. Boiko, B. Seoudi, et al., “Measurement Method of Complex Viscoelastic Material Properties,” Int. J. Solids Struct. 47 (3), 374–382 (2010).zbMATHGoogle Scholar
  7. 7.
    V. M. Kulik, A. V. Boiko, S. P. Bardakhanov, et al., “Viscoelastic Properties of Silicone Rubber with Admixture of SiO2 Nanoparticles,” Mater. Sci. Eng. A 528(18), 5729–5732 (2011).CrossRefGoogle Scholar
  8. 8.
    V. M. Kulik and A. V. Boiko, “Physical Principles of Methods for Measuring Viscoelastic Properties,” Prikl. Mekh. Tekh. Fiz. 59 (5), 123–136 (2018) [J. Appl. Mech. Tech. Phys. 59 (5), 874–885 (2018)].Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon Press, Oxford-Elmsford, New York, 1987).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits, Theory of Elasticity L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon Press, 1975).Google Scholar
  11. 11.
    A. V. Boiko, Yu. M. Nechepurenko, R. N. Zhuchkov, and A. S. Kozelkov, “Laminar-Turbulent Transition Prediction Module for LOGOS Package,” Teplofiz. Aeromekh. 21 (2), 201–220 (2014) [Thermophys. Aeromech. 21 (2), 191–210 (2014)].Google Scholar
  12. 12.
    A. V. Boiko, G. R. Grek, A. V. Dovgal, and V. V. Kozlov, Physics of Transitional Shear Flows (Springer Verlag, Berlin, 2011).Google Scholar
  13. 13.
    V. M. Kulik, “Boundary Conditions on a Compliant Wall in the Turbulent Flow,” Teplofiz. Aeromekh. 20 (4), 445–450 (2013) [Thermophys. Aeromech. 20 (4), 435–440 (2013)].MathSciNetGoogle Scholar
  14. 14.
    T. Benjamin, “Shearing Flow over a Wavy Boundary,” J. Fluid Mech. 6 (2), 161–205 (1959).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    C. B. Moler and G. W. Stewart, “An Algorithm for Generalized Matrix Eigenvalue Problems,” SIAM J. Numer. Anal. 10 (2), 241–256 (1973).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. M. Kulik, “Plane Strain Wave in an Anisotropic Layer of a Viscoelastic Material,” Prikl. Mekh. Tekh. Fiz. 47 (3), 104–111 (2006) [J. Appl. Mech. Tech. Phys. 47 (3), 394–400 (2006)].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. E. Darzhain
    • 1
    • 2
  • A. V. Boiko
    • 3
    • 4
    Email author
  • V. M. Kulik
    • 5
  • A. P. Chupakhin
    • 1
    • 2
  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Tyumen State UniversityTyumenRussia
  5. 5.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations