Advertisement

Modeling of High-Porosity Copper-Based Mixtures under Shock Loading

  • K. K. MaevskiiEmail author
  • S. A. Kinelovskii
Article
  • 7 Downloads

Abstract

A thermodynamically equilibrium model is applied for simulating thermodynamic parameters of shock loading of both pure materials and mixtures of homogeneous and porous materials. The model includes a modified equation of state, which has only one fitting parameter determined on the basis of experimental data. The thermodynamic parameters of shock loading of copper and copper-based mixtures with porosities of 1–10 at pressures above 5 GPa are calculated. The results of these calculations are compared to available experimental data (Hugoniot adiabats, double compression by shock waves, and temperature estimates). The possibility of modeling the compression of the mixture as a whole and each component separately is demonstrated.

Keywords

equation of state Hugoniot adiabat thermodynamic equality porous heterogeneous medium copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Shurshalov, A. A. Charakh’yan, and K. V. Khishchenko, “Numerous Experiment on Impact Compression of a Mixture of Graphite and Water,” Fiz. Goreniya Vzryva 53 (4), 114–121 (2017) [Combust., Expl., Shock Waves 53 (4), 471–478 (2017)].Google Scholar
  2. 2.
    B. Nayak and S. V. G. Menon, “Non-Equilibrium Theory Employing Enthalpy-Based Equation of State for Binary Solid and Porous Mixtures,” Shock Waves 28 (2), 141–151 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Medvedev, “Equation of State of Silicon Dioxide with Allowance for Evaporation, Dissociation, and Ionization,” Fiz. Goreniya Vzryva 52 (4), 101–114 (2016) [Combust., Expl., Shock Waves 52 (4), 463–475 (2016)].Google Scholar
  4. 4.
    A. A. Kayakin, L. F. Gudarenko, and D. G. Gordeev, “Equation of State of Compounds of Lithium Isotopes with Hydrogen Isotopes,” Fiz. Goreniya Vzryva 50 (5), 109–122 (2014) [Combust., Expl., Shock Waves 50 (5), 599–611 (2014)].Google Scholar
  5. 5.
    I. V. Lomonosov and S. V. Fortova, “Wideband Semi-Empirical Equations of State for Numerical Simulation of High-Energy Processes,” Teplofiz. Vysok. Temp. 55 (4), 596–626 (2017).Google Scholar
  6. 6.
    E. I. Kraus and I. I. Shabalin, “Calculation of Elastic Modules behind Strong Shock Wave,” J. Phys.: Conf. Ser 774, 012009 (2015).Google Scholar
  7. 7.
    S. D. Gilev, “Few-Parameter Equation of State of Copper,” Fiz. Goreniya Vzryva 54 (4), 107–122 (2018) [Combust., Expl., Shock Waves 54 (4), 482–495 (2018)].Google Scholar
  8. 8.
    K. V. Khishchenko, “Equation of State for Magnesium Hydride under Condition of Shock Loading,” Math. Montisnigri 43, 70–77 (2018).MathSciNetGoogle Scholar
  9. 9.
    S. A. Kinelovskii and K. K. Maevskii, “Model of the Behavior of the Mixture with Different Properties of the Species under High Dynamic Loads,” Prikl. Mekh. Tekh. Fiz. 54 (4), 13–21 (2013) [J. Appl. Mech. Tech. Phys. 54 (4), 524–530 (2013)].Google Scholar
  10. 10.
    S. A. Kinelovskii and K. K. Maevskii, “Model of the Behavior of Aluminum and Its Mixtures under Shock Loading,” Teplofiz. Vysok. Temp. 52 (6), 843–851 (2014).Google Scholar
  11. 11.
    S. A. Kinelovskii and K. K. Maevskii, “Modeling of Shock Loading of Multi-Component Materials Including Bismuth,” Teplofiz. Vysok. Temp. 54 (5), 716–723 (2016).Google Scholar
  12. 12.
    S. A. Kinelovskii and K. K. Maevskii, “Simple Model for Calculating Shock Adiabats of Powder Mixtures,” Fiz. Goreniya Vzryva 47 (6), 101–109 (2011) [Combust., Expl., Shock Waves 47 (6), 706–714 (2011)].Google Scholar
  13. 13.
    V. K. Golubev, “Determination of the Range of Applicability of Equations of State for Metals with a Constant Grüneisen Coefficient,” Khim. Fiz. 21 (10), 30–35 (2002).Google Scholar
  14. 14.
    S. N. Vaidya and G. C. Kennedy, “Compressibility of 18 Metals to 45 kbar,” J. Phys. Chem. Solids 3, 2329–2345 (1970).Google Scholar
  15. 15.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  16. 16.
    W. J. Nellis, A. C. Mitchell, and D. A. Young, “Equation-of-State Measurements for Aluminum, Copper, and Tantalum in the Pressure Range 80–440 GPa (0.8–4.4 Mbar),” J. Appl. Phys. 93 (1), 304–310 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Substances (VNIIEF, Sarov, 2006) [in Russian].Google Scholar
  18. 18.
    Shock Waves and Extreme State of Matter, Ed. by V. E. Fortov, L. V. Altshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000) [in Russian].Google Scholar
  19. 19.
    A. B. Medvedev, “Model of the Equation of State with Allowance for Evaporation, Ionization, and Melting,” Vopr. Atom. Nauk Tekh., Ser. Teoret. Prikl. Fiz., No. 1, 12–19 (1992).Google Scholar
  20. 20.
    S. A. Kinelovskii and K. K. Maevskii, “Estimation of Thermodynamic Parameters of Shock Loading on High-Porosity Heterogeneous Materials,” Zh. Tekh. Fiz. 86 (8), 125–130 (2016).Google Scholar
  21. 21.
    K. K. Maevskii and S. A. Kinelovskii, “Thermodynamic Parameters of Mixtures with Silicon Nitride under Shock Loading in the Equilibrium Model Concept,” Teplofiz. Vysok. Temp. 56 (6), 932–938 (2018).Google Scholar
  22. 22.
    P. R. Levashov, K. V. Khishchenko, I. V. Lomonosov, and V. E. Fortov, “Database on Shockwave Experiments and Equations of State Available Via Internet,” in Shock Compression of Condensed Matter-2003, Ed. by M. D. Furnish, Y. M. Gupta, and J. W. Forbes (AIP, Melville-New York, 2004), pp. 87–90.Google Scholar
  23. 23.
    R. F. Trunin, Investigation of Extreme States of Condensed Substances by the Shock Wave Method Hugoniot Equations (VNIIEF, Sarov, 2006) [in Russian].Google Scholar
  24. 24.
    Yu. N. Zhugin, K. K. Krupnikov, N. A. Ovechkin, et al., “Some Specific Features of Dynamic Compressibility of Quartz,” Fiz. Zemli, No. 10, 16–22 (1994).Google Scholar
  25. 25.
    B. L. Glushak, A. P. Zharkov, M. V. Zhernokletov, et al., “Experimental Investigations of Thermodynamics of the Dense Plasma of Metals at High Energy Densities,” Zh. Eksp. Teor. Fiz. 96 (4), 1301–1318 (1989).ADSGoogle Scholar
  26. 26.
    LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California Press, Berkeley, 1980).Google Scholar
  27. 27.
    R. F. Trunin, “Shock Compressibility of Condensed Substances in Powerful Shock Waves Generated by Underground Nuclear Explosions,” Usp. Fiz. Nauk 164 (11), 1215–1237 (1994).CrossRefGoogle Scholar
  28. 28.
    Methods of Studying Material Properties under Intense Dynamic Loads, Ed. by M. I. Zhernokletov (VNIIEF, Sarov, 2003) [in Russian].Google Scholar
  29. 29.
    V. K. Gryaznov, M. V. Zhernokletov, I. L. Iosilevskii, et al., “Shock Wave Compression of Strongly Non-Ideal Metal Plasma and its Thermodynamics,” Zh. Eksp. Teor. Fiz. 114 (4), 1242–1265 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations