Production and Machining Performance Study of Nano Al2O3 Particle Reinforced LM25 Aluminum Alloy Composites

  • T. P. ThankachanEmail author


The purpose of this study is to prepare specimens of 10 and 20%(wt.) nano Al2O3 particle reinforced LM25 metal matrix composites (MMCs) by stir casting. Another goal is to develop models using the response surface methodology (RSM) approach for predicting the surface roughness parameters and cutting force components during machining of the MMCs by a CBN7020 tool. With the help of the model developed, comparisons of 10 and 20%(wt.) nano Al2O3 particle reinforced LM25 MMCs are performed. Combined effects of three cutting parameters (cutting speed, feed rate, and depth of cut) on the surface roughness parameters and cutting force components are explored by using the analysis of variance (ANOVA). The resultant values of the parameters are found to agree well with available experimental values.


metal matrix composites (MMCs) mechanical properties casting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. A. Ansary, M. Montazerianb, H. Abdizadehb, and H. R. Baharvandic, “Microstructure and Mechanical Properties of Aluminium Alloy Matrix Composite Reinforced with Nanoparticle MgO,” J. Alloys Compounds 484 (1/2), 400–404 (2009).Google Scholar
  2. 2.
    J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal Matrix Composites: Production by the Stir Casting Method,” J. Materials Process. Technol. 92/93, 1–7 (1999).CrossRefGoogle Scholar
  3. 3.
    M. Kok, “Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites,” J. Materials Process. Technol. 161 (3), 381–387 (2005).CrossRefGoogle Scholar
  4. 4.
    A. Mazaherya, H. Abdizadeha, and H. R. Baharvandib, “Development of High Performance A356/nano-Al2O3 Composites,” J. Material Sci. Eng. 518 (1/2), 61–64 (2009).CrossRefGoogle Scholar
  5. 5.
    S. Hai, G. Wenli, Z. Hui, et al., “Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir Casting Process,” J. Manuf. Sci. Eng. 132 (6), 1–7 (2010).Google Scholar
  6. 6.
    M. H. Adel, A. Mohammed, Q. Tarek, and G. Ahmed, “Effect of Processing Parameters on Friction Stir Welding Aluminium Matrix Composites Wear Behavior,” Mater. Manuf. Processes 27 (12), 1419–1423 (2012).CrossRefGoogle Scholar
  7. 7.
    R. S. Rana, P. Rajesh, and S. Das, “Review of Recent Studies in Al Matrix Composites,” Sci. Eng. Res. 3 (6), 1–16 (2012).Google Scholar
  8. 8.
    E. Kilickap, O. Cakir, M. Aksoy, and A. Inan, “Study of Tool Wear and Surface Roughness in Machining of Homogenised SiC-p Reinforced Aluminium Metal Matrix Composite,” J. Mater. Process. Technol. 164/165, 862–867 (2005).CrossRefGoogle Scholar
  9. 9.
    S. T. Mileiko, “High-Temperature Metal Matrix Composites,” Prikl. Mekh. Tekh. Fiz. 55 (1), 166–178 (2014) [J. Appl. Mech. Tech. Phys. 55 (1), 136–146 (2014)].MathSciNetGoogle Scholar
  10. 10.
    F. Farhadinia, A. Sedghi, and M. T. Nooghani, “Properties of an Al/(Al2O3+TiB2+ZrB2) Hybrid Composite Manufactured by Powder Metallurgy and Hot Pressing,” Prikl. Mekh. Tekh. Fiz. 58 (3), 90–97 (2017) [J. Appl. Mech. Tech. Phys. 58 (3), 454–460 (2017)].Google Scholar
  11. 11.
    K. Palanikumar and R. Karthikeyan, “Assessment of Factors Influencing Surface Roughness on the Machining of Al/SiC Particulate Composites,” J. Mater. Design 28 (5), 1584–1591 (2007).CrossRefGoogle Scholar
  12. 12.
    K. T. Chiang, “Modeling and Analysis of the Effects of Machining Parameters on the Performance Characteristics in the EDM Process of Al2O3 + TiC Mixed Ceramic,” Int. J. Adv. Manuf. Technol. 37 (5/6), 523–533 (2008).CrossRefGoogle Scholar
  13. 13.
    A. D. Uday, A. S. Harshad, and S. J. Suhas, “Cutting Forces and Surface Roughness in Machining Al/SiCp Composites of Varying Composition,” Mater. Sci. Technol. 14 (2), 258–274 (2010).Google Scholar
  14. 14.
    S. M. Suresh, M. Debadutta, A. Srinivasan, et al., “Production and Characterization of Micro and Nano AlO Particle-Reinforced LM25 Aluminium Alloy Composites,” ARPN J. Eng. Appl. Sci. 6 (6), 94–98 (2011).Google Scholar
  15. 15.
    R. M. Arunachalam, S. Ramesh, and J. S. Senthilkumar, “Machining Performance Study on Metal Matrix Composites-A Response Surface Methodology Approach,” Amer. J. Appl. Sci. 9 (4), 478–483 (2012).CrossRefGoogle Scholar
  16. 16.
    A. T. Mohamed, A. E. Nahed, and M. E. Ahme, “Some Experimental Data on Workability of Aluminium-Particulate-Reinforced Metal Matrix Composites,” J. Mater. Process. Technol. 202, 1–3 (2008).CrossRefGoogle Scholar
  17. 17.
    K. B. Rajesh, K. Sudhir, and S. Das, “Effect of Machining Parameters on Surface Roughness and Tool Wear for 7075 Al Alloy SiC Composite,” Int. J. Adv. Manuf. Technol. 50 (5–8), 459–469 (2010).Google Scholar
  18. 18.
    R. D. Chinmaya and C. S. Yung, “Modeling of Machining of Composite Materials: A Review,” Int. J. Mach. Tools Manuf. 57, 102–121 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Rajagiri School of Engineering TechnologyKochiIndia

Personalised recommendations