Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 1136–1144 | Cite as

Effect of Surface Layer Damage on Acoustic Anisotropy

  • A. S. SemenovEmail author
  • V. A. Polyanskii
  • L. V. Shtukin
  • D. A. Tretyakov
Article
  • 20 Downloads

Abstract

Relations for the principal values of the damage tensor based on data on the speeds of longitudinal and transverse waves are proposed. The relationship of acoustic anisotropy with the principal values of the damage tensor are established. The distributions of local speeds and damage along the thickness of the specimen are studied. It is shown that damage is localized in a narrow surface layer, with local damage maxima far exceeding the average damage value.

Keywords

acoustic anisotropy surface layer effect experiment simulation damage tensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Benson and V. J. Raelson, “From Ultrasonics to a New Stress-Analysis Technique, Acoustoelasticity,” Product. Eng. 30 (29), 56–59 (1959).Google Scholar
  2. 2.
    D. S. Hughes and J. L. Kelly, “Second-Order Elastic Deformation of Solids,” Phys. Rev. 92 (5), 1145–1159 (1953).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    N. E. Nikitina, Acoustoelasticity. Experience of Practical Application (Talam, Nizhniy Novgorod, 2005) [in Russian].Google Scholar
  4. 4.
    M. Hirao and Y. H. Pao, “Dependence of Acoustoelastic Birefringence on Plastic Strains in a Beam,” J. Acoust. Soc. Amer. 77 (5), 1659–1664 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    M. Kobayashi, “Ultrasonic Nondestructive Evaluation of Microstructural Changes of Solid Materials under Plastic Deformation. 1. Theory,” Int. J. Plasticity 14 (6), 511–522 (1998).CrossRefzbMATHGoogle Scholar
  6. 6.
    A. K. Belyaev, A. M. Lobachyov, V. S. Modestov, et al., “Estimation of Plastic Strain Using Acoustic Anisotropy,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 124–131 (2016).Google Scholar
  7. 7.
    B. O’Neill and R. G. Maev, “Acousto-Elastic Measurement of the Fatigue Damage in Waspaloy,” Res. Nondestruct. Evaluat. 17 (3), 121–135 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Erofeev, A. N. Morozov, and E. A. Nikitina, “Accounting for the Effect of Material Damage on the Propagation Speed of an Elastic Wave in It,” Electron. Zh., Tr. Mosk. Aviats. Inst., No. 40, 1–5 (2010).Google Scholar
  9. 9.
    O. V. Muravieva, V. V. Muraviev, M. A. Gabbasova, et al., “Electromagnetic-Acoustic Structural Analysis of Rolled Bars,” AIP Conf. Proc. 1785 (1), 030017 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Fishkis and J. C. Lin, “Formation and Evolution of a Subsurface Layer in a Metal Working Process,” Wear 206, 156–170 (1997).CrossRefGoogle Scholar
  11. 11.
    S. Ghosh, M. Li, and D. Gardiner, “A Computational and Experimental Study of Cold Rolling of Aluminum Alloys with Edge Cracking,” J. Manuf. Sci. Eng. 126, 74–82 (2004).CrossRefGoogle Scholar
  12. 12.
    H. Riedel, F. Andrieux, and T. Walde, “The Formation of Edge Cracks during Rolling of Metal Sheet,” Steel Res. Int. 78, 818–824 (2007).CrossRefGoogle Scholar
  13. 13.
    K. Kenmochi, I. Yarita, H. Abe, et al., “Effect of Micro-Defects on the Surface Brightness of Cold-Rolled Stainless-Steel Strip,” J. Mater. Process. Technol. 69, 106–111 (1997).CrossRefGoogle Scholar
  14. 14.
    M. A. Golovnin and R. F. Iskhakov, “Formation of Properties of Aluminum Alloy in Hot Rolling,” in Materials Science and Metal Physics of Light Alloys, Proc. 3rd Int. Scientific Scholarship for Youth, Ekaterinburg, December 8–12, 2014 (Ural. Federal University, Ekaterinburg, 2014), pp. 208–210.Google Scholar
  15. 15.
    F. D. Murnaghan, “Finite Deformation of Elastic Solid,” Amer. J. Math. 59, 235–260. (1937).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. I. Lur’e, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].zbMATHGoogle Scholar
  17. 17.
    L. M. Kachanov, “On the Fracture Time in Creep,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 8, pp. 26–31.Google Scholar
  18. 18.
    S. Murakami and N. Ohno, “A Continuum Theory of Creep and Creep Damage,” in Creep in Structures, Ed. by A. R. S. Ponter and D. R. Hayhurst (Springer, Berlin, 1981), pp. 422–443.CrossRefGoogle Scholar
  19. 19.
    A. S. Semenov, “Symmetrization of the Effective Stress Tensor for Media with Anisotropic Damage,” Nauch.-Tekh. Vedom. St.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauiki 10 (2), 82–98 (2017).MathSciNetGoogle Scholar
  20. 20.
    A. K. Belyaev, A. I. Grishchenko, V. A. Polyanskiy, et al., “Acoustic Anisotropy and Dissolved Hydrogen as Indicators of Waves of Plastic Deformation,” in Days on Diffraction, Proc. of the Int. Conf., St. Petersburg, June 19–23, 2017, pp. 39–44.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Semenov
    • 1
    Email author
  • V. A. Polyanskii
    • 1
  • L. V. Shtukin
    • 1
  • D. A. Tretyakov
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations