Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 59, Issue 6, pp 1126–1135 | Cite as

Creating a Coating from a Titanium–Aluminum Intermetallic Compound By the Cold Spray Technology

  • S. P. KiselevEmail author
  • N. S. Ryashin
  • E. A. Maksimovskii
  • V. P. Kiselev
  • S. V. Klinkov
  • V. F. Kosarev
  • A. A. Filippov
  • V. S. Shikalov
Article
  • 8 Downloads

Abstract

Results of experimental and numerical investigations of the process of creating coatings from a titanium–aluminum intermetallic compound by using an additive method are presented. It is demonstrated that the process of intermetallic compound formation is limited by the rate of titanium dissolution and diffusion in the aluminum melt. The proposed method can be applied for hardening titanium plate surfaces for their exploitation at high temperatures and pressures.

Keywords

titanium–aluminum intermetallic compound diffusion equation molecular dynamics method aluminum melt cold spray radial nozzle supersonic flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology (Elsevier, Amsterdam, 2007).Google Scholar
  2. 2.
    H. Y. Lee, S. H. Jung, S. Y. Lee, and K. H. Ko, “Alloying of Cold-Spray Al–Ni Composite Coating by Post-Annealing,” Appl. Surf. Sci. 253, 3496–3502 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    H.-T. Wang, C.-J. Li, G.-J. Yang, and C.-X. Li, “Cold Spraying of Fe/Al Powder Mixture: Coating Characteristics and Influence of Heat Treatment on the Phase Structure,” Appl. Surface Sci. 255, 2538–2544 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    R. R. Zope and Y. Mishin, “Interatomic Potentials for Atomistic Simulations of the Ti–Al System,” Phys. Rev. B 68, 024102-1–024102-14 (2003).Google Scholar
  5. 5.
    S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117, 1–19 (1995).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    S. P. Kiselev, “Modeling of Crystallization of the Ti–Al Nanoparticle by the Molecular Dynamics Method,” Dokl. Akad. Nauk 466 (4), 406–408 (2016).Google Scholar
  7. 7.
    S. P. Kiselev and E. V. Zhirov, “Molecular-Dynamics Simulation of the Synthesis of Intermetallic Ti–Al,” Intermetallics 49, 106–114 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Parinello and A. Rahman, “Polymorphic Transitions in Single Crystal: A New Molecular Dynamics Method,” J. Appl. Phys. 52 (12), 7182–7190 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. P. Kiselev
    • 1
    • 2
    Email author
  • N. S. Ryashin
    • 1
  • E. A. Maksimovskii
    • 3
  • V. P. Kiselev
    • 1
  • S. V. Klinkov
    • 1
  • V. F. Kosarev
    • 1
  • A. A. Filippov
    • 1
  • V. S. Shikalov
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations